THE
ADA CONFORMITY ASSESSMENT TEST SUITE
(ACATY)

VERSION 2.5
USER'S GUIDE

April 1, 2002

Prepared by:

Ada Conformity Assessment Authority
Randdl L. Brukardt, Technica Agent
2318 Winnebago Street
Madison, WI 53704

Contents

O VO 151 L O 1]\ 1
11 DEfINITION Of TENMS ...ttt ettt bbb bbb bbb bbb b st et e s e st ebeseaetetetenas 2
12 REFEIMBNCES ...t ettt b bbb bbb b bbb e At bbbttt e b et et e be s et et eseaebebetenetetetenes 4
13 A C AT SPUIPOSE.....ciiertririrer sttt sttt bbbt d bttt b b se b bbb b b e bbb bbb bbb ettt eb et et bebneas 5

2. CHANGESFOR ACAT S 2.5 ittt 7

3. CONFIGURATION INFORMATION ...ttt eevvereee e svvaee e e e 9
31 L oo 18 o oo TP RTPTRSRRRT 9
3.2 I 1 0 o (U R

321 PhySICal Organi ZaLiON........couevereeiririreeirereseeresessesisesessssssesessssssssessssssssessssssssesssssssssssssessssssssssenssnseses
322 (oo o= @ 0= 1o o TP
323 Legacy TeStS. ..o seenes
324 Foundation Code...........ccoceeverinerenevenenesesesesesesenens
325 SpecCial COreTESS....omrrereerrireeereseseseeseressenenns

326 Foreign Language Code

33
331
332
333
334 CUBSS D iR bR 14
335
336
337
338
34 N E= T T o T @a] Y= | o] o O
34.1 = = oy 1 o TP
342 ACATS25Naming
343 MUltiple File TESES ..ot
35 TES Program FOMMAL.... ..ottt bbb bbb bbb bbb bbbt bbb bbb b bbbt 20
36 GENEN 8l SLANAAI TS ...ttt s b bbbttt 22
37 TESE SETUCTUN €.t e p e 22
3.8 DEliVErY DIl €CLONY SEFUCTUT €...vueeeieirecereeereesseseressseetsesessssesesssssssessssssssssessssssessssssssssessssssssssssssssssssessens 24
39 PR FOI INAL ...ttt bbbttt 25
4, USING THE ACAT S ettt tae s s ssae e s nbaeesnaeenn 27

ACATS2.5User'sGuide 1 April 2002 i

4.1 (LA 0To [0 T o T 27

4.2 Installation Of the ACAT STESE SUILEvueuiereeiricireeeree et 27
421 ContentS Of thE ACATS DEIIVEIY ...ttt sss s ssnsesen 27
422 GUIdeto DecOmMPreSSiNg FIlES.......ccocrienriccersisee et s st sns s sessssesaen 28
423 Files With NON-GraphiC CharaClerS..........ccoevireininissiresesessesesssssssessssssssssssssssesssssesssssssssssssssseses 30

4.3 Taloringthe ACATSTES SUILE ...ttt st ss s es st esnns
431 IMPDES CUSLOMIZBLIONcvvieecietriesictsees sttt a s st e nss s ses s snsessennsnsesaes
432 MaCrO DEfS CUSLOMIZALIONucuvvreeeieireeeeeeretisessi st eb bbbt
433 Processing for Wide_Character TESES......ccovvveeeevereseenineseesesesessseseneens
434 Package SPPRT13 and Function FcnDecl
435 Modification of Package REPORTccccoeievnieennesissssessseesessssessenens
436 Allowed Test MOGifiCaliONS.......ccucurieerieeirieeireirei ettt

4.4 Processing the SUPPOIT FIlES ...ttt 37
441 Support FileS...vceeverecenne,

442 "CZ" Acceptance Tests

4.5 Establishing Command SCriPLS.....cocvrrrreerressissesesssssesssssssesessesesns 38
451 Command Scripts
452 =0T 0T 1= 0 =TT

4.6 PrOCESSING ACAT S TESES . .ciciieceeteiri sttt st s e s n s s s st es st a e anse s s nnsesens
46.1 S0 [U T =0 = £ OO
462 Test Partitions........cccocveeeeenee
46.3 Bundling Test Programs
464 Processing That May B OMItIEA.......c.cccceriiccersiserrcse s sess
465 Testswith Specia Processing Requirement
4.6.6 FOCUS ON SPECITIC ATEAS ...ttt sttt s st st s s ns e nnsnsesaes

4.7 LT o T T I=S (=S U] PR
471 Expected results for EXECULANIE TESES.......cccvireeiniriceireresesesess s ssssesessssssssessssssssssssssssesssssesnes
472 Expected ReSUItSfOr Class B........ccccccevnerenenesesseses e seesessssesseeens
473 Expected RESUISTOr ClasS L ... sssesssssesessssesseneens
474 Inapplicable Tests
AT5 WIINOrBWN TESES ...ttt bbb e bbbt

4.8 Addressing ProblemMS Or [SSUES........ccciciriririricssesetseses st ssss s sss s sssssesssssssssssssssssesssens 51
N Y/ oo I oSS 1= 51
482 Deviation from Expected Results - Petition & REVIEW.........cccuvvccirvereenseees s 51

4.9 Reprocessing and REGIAGINGcceiireireresrressetsesssssssessssssse s ssssssssssssssssessssessssssssssssessssssssesenns 52

APPENDIX A: VERSION DESCRIPTION ...ttt 53

N R O T =S I == B 1= OO 55

A2 Specialized NeedS ANNEX TESE FIlES.......cviiiciieireersee e 75

A3 FOUNALioN COUEFIES.......cciietrereeeirireee ettt ettt 77

A4 DOCUMENTALION FIlES......cuiiiiiieirerecieirrceie ettt bbbttt 79

1 April 2002 ACATS25User'sGuide

AD OLNEN FIES ..t

AS51 Listof ACATS25FIES....erereercrencrenee

A.5.2 Support Units Referenced by Many Tests

A.53 Preprocessing Toolsand Data.........cccoveeveerrerenene.

AB54 TestSTOor REPOItING COUE.......ccciieeeeeerece st s s st sn s s snsesen
A6 TestsWith Special REQUITEMENES.......cccceiicceirercse sttt sse s snses 83
A7 Tet FIIeSAAAED IN ACATS 25 ..ttt bbb 85
A8 Test FilesModified FOr ACATS 2.5 ...ttt 87
A9 Support FilesModified FOr ACATS 2.5, st ssss s ssssssssesssssessssssssnes 89
A.10 Test FilesDeleted SINCE ACAT S 2.4 ...ttt 91

APPENDIX B: PARAMETERIZATION FILES. ...t 93
B.1 MACrO SUDSHTULION FlE....eiiiieieectes ettt e 95
B.2 MaACrO SUDSHTULION TESS...eoiiecirricietseretiet sttt bbb bbbt 97
B.3 PackagelmpDef and [tS Children.........oicincn s 99

APPENDIX C: OUTPUT OF CZ TESTS......o ottt 101
C.1 SampleOutput From CZODDA.......cooeeerereeeeireseseseesessssssssessssessssssssssssssssssssesssssessssssssssessssssessssssssnses 103
C2 Sample Output From CZLI0LAceererectreseses s tsesssssssesss s sssssesssssssssssesssssessssssssssesssssesssssssseses 105
C3 SampleOutput From CZLI02Acreeeeeireresesteisessssssssessssssssssssssssssssssssssssssssesssssssssssssssssessssssseses 107
C4 Sample Output From CZLI0BAceerereeeeiresesesisesessssssssessssessssssssssssssssssssssssssessssssssssessssssessssssseses

C4.1 Output When External Files Are Supported............

C4.2 Output When External Files Are Not Supported

APPENDIX D: TEST APPLICABILITY CRITERIA ... 111
D1 CompileTimelNapPHCADIIITY ..o

D11 TYpPeSHORT _INTEGER ..ottt sttt sessssesessesse s s ssessssesssesse st essssssnssssnes

D.12 TYPELONG INTEGER.. ...ttt ettt sese sttt snnsssnes

D.13 Other Predefined Integer Types

D.14 FiXed POINt RESIICIIONS........ciiiirerireeeeieirerecie et sessas ettt sttt

D.15 NON-binary VAlUES Of *SIMALL ..ottt saens

D.16 Compiler Reection of Supposedly Static Expression

D.17 MaChing COOE INSEITIONS.......c.oriurerireeeririrereeie et sesessas ettt bt ssb et

D.1.8 lllegal EXternal FIIENGIMES........cocoeiiriciriericeet e

D.1.9 DECIMEI TYPES ...ccveerieireeeiserseses sttt s

D.110 Instantiation of Sequential_IO with iNdefiNite tYPESccvveerrecrriererrserereeee s 115

D111 SpeCial HANAIING TESESc.cvevriiereiereeineiesie st 115

ACATS2.5User'sGuide 1 April 2002 iii

(DI S 0= o o = 'o I K aT=T] o] [Tor= o1 1) TR 117

D21
D.22
D.23
D.24
D.25
D.26
D.27
D.28
D.29
D.210
D.211
D.212
D.2.13
D.214
D.215
D.2.16
D.2.17
D.2.18
D.219

Vaue of MACHINE_OVERFLOWS IS FAISE. ...ttt sess e 117
Vaue of MACHINE_OVERFLOWSisTrue
SYSTEM.IMAX _DIGITS....oieitieitireeiseeisee ettt
FIOating POINt OVEITIOWc.cviecieiiesccetrcee ettt snseses
TYPE DURATION ...ttt sttt bbbttt bbbttt bbbttt bbbttt ettt nents
Text Files (NON-SUPPOrted FEELUIES)ccvvireeirereseriresesiesesessssesssesssssessesssssssssssssssssssssssssssssssesens
Text Files (Supported Features)
Sequential Files (Non-supported Features)
Sequential Files (SUPPOIEd FEALUIES)........ccvviirrirerreerireseeisisesessssssssssssessesssssessssssssssssssssssssssnnens

Direct Files (Non-supported FEAtUreS).........couvurerrenrereenereseneressssssenens

Direct Files (Supported FEALUrES).........covvurrmrrereerrrenssiesesssesesesssssesnens

Stream Files (NoNn-supported FEaLUIES)..........ouerrurerreeerressseeeseesesserenenns

Wide Text Files (Non-supported Features)

FIIE /O TESES ..ottt bbb

Memory for Allocated OBJECES ...

TasK ALEHDULES ...

Reserved Interrupts............

Multiprocessor Systems

NON-binary Maching RAIX........cccucurureeeeiriieisieisisssssesessssssssesssssssessssssssesssssessssesssssssssssssssssesssnsens

1 April 2002 ACATS25User'sGuide

1. Introduction

The Ada Conformity Assessment Test Suite (ACATYS) isthe officid test method used to check
conformity of an Ada implementation with the Ada programming language standard
(ANSI/ISO/IEC 8652:1995). The ACATS User's Guide is pat of the ACATS and is
distributed with the test programs and testing support packages. It explains the contents and use
of the test suite.

The ACATS is an important part of the conformity assessment process described in ISO/IEC-
18009, Ada: Conformity of a Language Processor [ISO99]. This standard provides a
framework for testing language processors, providing a stable and reproducible basis for testing.
The Ada Resource Association has sponsored an ingtantiation of that process since October
1998. The process is managed by the Ada Conformity Assessment Authority (ACAA).

Prior to the ISO standard, the U.S. Department of Defense sponsored a similar conformity
assessment process under the Ada Joint Program Office (AJPO). The test suite for that process
was known as the Ada Compiler Vaidation Capability (ACVC). The AJPO developed ACVC
versons based on ANSI/MIL-STD-1815A-1983, 1S0/8652:1987 (Ada 83), which were
numbered 1.x where x ranged from 1 to 11. It later developed ACVC versions based on
ANSI/ISO/IEC 8652:1995 (Ada95), numbered 2.0, 2.0.1, 2.1, and 2.2.

When the ACAA took over Ada conformity assessment, it adopted the ACVC as the basis for
its test suite. The ACAA determined to continue to use the same verson numbering for the test
auite in order to avoid confusion. The verson of the ACVC current a thetime (2.1) was initidly
used asACATS 2.1. Later, the already developed but unreleased ACV C 2.2 was released and
used as ACATS 2.2. The ACAA later released ACATS 2.3 and then ACATS 2.4 to include
mai ntenance changes and afew new teds.

This verson of the ACATS is verson 25. As with ACATS 2.3 and 2.4, this verson was
completely developed under the auspices of the ACAA. As with it predecessors, ACATS 2.5
contains test programs to check for conformity to new language features defined in [Ada99], as
well as test programs to check for conformity to language features shared between Ada83 and
Adad5. Subsequent maintenance or enhancement versions of the suite, if they are required, will
be numbered 2.5, etc.

The ACATS User’s Guide describes the set of ACATS tests and how they are to be used in
preparation for conformity assessment. The forma procedures for conformity assessment are
described in [Pro01], and the rules in that document govern al conformity assessments,
notwithstanding anything in this document that may be interpreted differently. Moreover, this
guide does not discuss specific requirements on processing of the ACATS test suite, or

ACATS2.5User'sGuide 1 April 2002 1

submission and grading of results that an Ada Conformity Assessment Laboratory (ACAL) may
impose.

The Usar's Guide is intended to be used by compiler implementers, software developers who
maintain a versgon of the ACATS as a qudity control or software acceptance tool, and third-
party testers (e.g., Ada Conformity Assessment L aboratories).

Section 2 of the Usar’'s Guide for ACATS 2.5 summarizes the changes between ACATS 24
and ACATS 2.5. Section 3 describes the configuration of the ACATS, including a description
of the ACATS software and ddlivery files. Section 4 provides step-by-step instructions for
ingdling and using the test programs and test support packages, and for grading test results.
The gppendices include other information that characterizesthe ACATS 2.5 release.

Refer to Sections 1.1 and 4.7 for the definition of an acceptable result and the rules for grading
ACATS 2.5 test program results. Section 4.8.2 provides indructions for submitting a petition
agang atest program if a user believes that a deviation from the acceptable results for a given
test program isin fact conforming behavior.

The ACATS tet auite is avalable from any ACAL and from the Ada Information
Clearinghouse (sponsored by the ARA). See http: //mwww.adaic.org.

1.1 Definition of Terms

Acceptable result : The result of processing an ACATS test program that meets the explicit grading
criteriafor agrade of "passed” or inapplicable.

ACATSMadification List (AML) : A list maintained by the ACAA documenting the currently modified
and withdrawn tests. It also documents any new tests that have been or will be added to the test
suite. The ACATS modification list is updated from time to time as challenges from implementers
are received and processed, new tests are created, or as other technical information isreceived.

ACVC Implementer’s Guide (AIG) : A document describing the test objectives used to produce test
programs for Ada83 ACVC versions (1.1-1.11). AlG section references are embedded in Ada83
test naming conventions.

Ada Conformity Assessment Authority (ACAA) : The part of the certification body that provides
technical guidance for operations of the Ada certification system

Ada Conformity Assessment Laboratory (ACAL) : The part of the certification body that carries out the
procedures required to perform conformity assessment of an Ada implementation. (Formerly
AVF)

Ada implementation : An Ada compilation system, including any required run-time support software,
together with itshost and target computer systems.

2 1 April 2002 ACATS25User'sGuide

Ada Joint Program Office (AJPO) : An organization within the U.S. Department of Defense that
sponsored the development of the ACV C and formerly provided policy and guidance for an Ada
certification system.

Ada programming language : The language defined by reference [Ada95].

Ada Resource Association (ARA) : The trade association that sponsors the Ada conformity
assessment system.

Ada Validation Facility (AVF) : Former designation of an Ada Conformity Assessment Laboratory
(which see).

Ada Validation Organization (AVO) : Organization that formerly performed the functions of the Ada
Conformity Assessment Authority (which see).

Certification Body : The organizations (ACAA and ACALSs) collectively responsible for defining and
implementing Ada conformity assessments, including production and maintenance of the
ACATS tests, and award of Ada Conformity Assessment Certificates.

Certified Processors List (CPL) : A published list identifying all certified Ada implementations. The
CPL isavailable on the Ada Information Clearinghouse I nternet site (www.adaic.org).

Challenge : A documented disagreement with the test objective, test code, test grading criteria, or
result of processing an ACATS test program when the result is not PASSED or INAPPLICABLE
according to the established grading criteria. A challenge is submitted to the ACAA.

Conforming implementation : An implementation that produces an acceptable result for every
applicable test. Any deviation constitutes a non-conformity.

Corelanguage: Sections 2-13 and Annexes A, B, and J of [Ada95]. All implementations are required to
implement the core language. The tests for core language features are required of all
implementations.

Coveragematrix : A document containing an analysis of every paragraph of [Ada95]. Each paragraph
has an indication of whether is contains a testable Ada95 requirement, whether it is upwardly
compatible from Ada83, or whether is testable in the ACATS suite (e.g. it contains an example).
Paragraphs that contain testable requirements also indicate what ACATS test(s) specifically
examine features described in the paragraph.

Deviation : Failure of an Ada implementation to produce an acceptable result when processing an
ACATStest program.

Foundation Code : Packages used by multiple tests; foundation code is designed to be reusable.
Generally a foundation is a package containing types, variables, and subprograms that are
applicable and useful to a series of related tests. Foundation code is never expected to cause
compile time errors. It may be compiled once for all tests that use it or recompiled for each test
that usesit; it must be bound with each test that usesiit.

ACATS2.5User'sGuide 1 April 2002 3

Legacy Tests : Teststhat wereincluded in ACVC 1.12 that have been incorporated into later ACVC and
ACATS versions. The vast majority of these tests check for language features that are upwardly
compatible from Ada83 to Ada95. Some of these tests have been modified from the ACVC 1.12
versions to ensure that Adad5 rules are properly implemented in cases where there were
extensions or incompatibilities from Ada83 to Adag5.

Specialized Needs Annex : One of annexes C through H of [Ada95]. Conformity testing against one or
more Specialized Needs Annexes is optional. There are tests that apply to each of the Specialized
Needs Annexes. Results of processing these tests (if processed during a conformity assessment)
are reported on the certificate and in the Validated CompilersList.

Test Objectives Document (TOD) : A document containing the test objectives used for new ACATS
tests that focus on Ada95-specific features.

Validated CompilersList (VCL) : Former designation of the Certified Processors List (which see).
Validated | mplementation : Informally used to mean Conforming Implementation (see).
Validation : Informally used to mean conformity assessment.

Withdrawn Test : A test found to be incorrect and not used in conformity testing. A test may be
incorrect because it has an invalid test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language. Withdrawn tests are not applicable to
any implementation. Withdrawn tests are often modified and restored to subsequent ACATS
rel eases.

Witness Testing : Conformity assessment testing performed in the presence of ACAL personnel.
Witness testing adds the assurance that the test procedures were followed and that the results
were verified.

1.2 References

[Ada83] ANSI/MIL-STD-1815A-1983, 1SO 8652:1987, FIPS 119 Reference Manual for the Ada
Programming Language--superseded by | SO-8652:95)

[Ada95] ANSI/ISO/IEC 8652:1995, FIPS 119-1 The Reference Manua for the Ada
Programming Language, February 1995

[1S099] ISO/IEC 18009:1999, Information technology -- Programming languages -- Ada
Conformity Assessment of aLanguage Processor, December 1999

[Pro01] Ada Resource Association: Operating Procedures for Ada Conformity Assessments
Verson 3.0, April 2001

[TCq] ISO/IEC 8652:1995/Cor.1:2001 Programming Languages - Ada - Technical
Corrigendum 1, June 1, 2001

4 1 April 2002 ACATS25User'sGuide

1.3 ACATSPurpose

The purpose of the ACATS is to check whether an Ada compilation system is a conforming
implementation, i.e., whether it produces an acceptable result for every gpplicable test.

A fundamenta goa of conformity assessment (vaidation) isto promote Ada software portability
by ensuring consstent processing of Ada language features as prescribed by [Adao5]. ACATS
tests use language features in contexts and idioms expected in production software. While they
exercise a wide range of language feature uses, they do not and cannot include examples of dl
possible feature uses and interactions.

It is important to recognize that the ACATS tests do not guarantee compiler correctness. A
compilation system that correctly processes the ACATS testsis not thereby deemed error-free,
nor isit thereby deemed capable of correctly processing al software that is submitted to it.

The ACATS tests do not check or report performance parameters (eg., compile-time
capacities or run-time speed). They do not check or report for characteristics such as the
presence and effectiveness of compiler optimization. They do not investigate or report compiler
or implementation choices in cases where the sandard alows options.

ACATS2.5User'sGuide 1 April 2002 5

2. Changesfor ACATS25

Verson 2.5 of the ACATS primarily is a maintenance verson. It contains a few new tests to
check conformity with the Technical Corrigendum for [Ada95], [TC1]

In addition, some tests known to have problems have been modified. See Appendix A for lists
of added, deleted and modified tests.

ACATS2.5User'sGuide 1 April 2002

3. Configuration Information

3.1 Introduction

This section describes the physical and logical structure of the ACATS delivery, and it describes
the test classes, naming conventions used, test program format, test structure, ddlivery structure,
and file format.

ACATS 25 is arevison of ACATS 2.4, and has the essentidly the same ddivery Sructure.
The support tools are essentidly unchanged, except for updating header comments and version
identification.

The test suite does not provide tools or scripts that can be used to manage complete test
processing, since such tools are normally site specific.

3.2 Structure

The ACATS 25 test software includes test code that exercises specific Ada features,
foundation code (used by multiple tests), support code (used to generate test results), and tool
code (used to build tools necessary to customize ACATS tests). The suite includes tests for the
core language and tests for the Speciadized Needs Annexes. Table 1 summarizes the number of
tests and filesin the ACATS suite.

Total CoreTests | SNA Tests | Foundations Docs Other
Number of Files 4308 3977 247 14 17 23
Number of Tests 3689 3500 189 0 0 0
Table 1.
The delivery sructure of the test suite is described in Section 3.8.
ACATS2.5User'sGuide 1 April 2002 9

3.2.1 Physical Organization

Table 1 summarizes the number of filesthat compose ACATS 2.5. In addition to files containing
test code proper, the ACATS 2.5 test suite includes various support files:

Others congsts of

1 Lig of dl files
14 Codethat isreferenced by tests

4 Code and data used for preprocessing tests to insart implementation specific
information

4 Test routines for reporting code ("CZ" tests)

Note that the number of files containing test code is larger than the number of tests in the
ACATS suite because severa tests use code included in separate files.

A file name congsts of a name plus an extenson. Multiple files that contain code used by a
sngle test have rdated names. File names are the same as that of the test contained in the file
when possible. File names conform to MS-DOS naming conventions, therefore they may be
shorter than the software name because of file name length redtrictions (e.g., enumchek rather
than enumcheck). File (and test) names follow conventions that indicate their function in the test
uite; naming conventions are explained in Section3.4. The files are organized into digtinct
directories and subdirectories based on their function in the test suite. The directory organization
isexplained in Section 3.8.

The ACATS is available to the generd public from an ACAL or on the Internet. Links to the
ACATS digtribution can be found on the ACAA's ACATS page:
http://www.ada-auth.org/acats.html

Note that the ACATS files are available in both compressed Unix tar and DOS zipped formats.
Section 4.2.2 provides a discusson of techniques to convert these files to a usable format.

10 1 April 2002 ACATS25User'sGuide

3.2.2 Logical Organization

Table 1 summarizes the number of tests that check the conformance of an Ada implementation
to the core language and conformance to the Speciaized Needs Annexes of [Adad5].

Core tests gpply to dl implementations. Speciaized Needs Annex tests are not required for any
implementation. Tests for a given Specidized Needs Annex may be processed by
implementations that clam implementation of that annex.

In general, no test result depends on the processing or the result of any other test. Exceptions
are noted in Section 4.5.2. No annex test depends on the implementation of any other annex,
except possibly in cases where one annex specifically depends on another in Adads (e.g., ho
test for the Information Processing Annex uses features from any other annex, however Redl
Time Annex and Didributed Processng tests may depend on Systems Programming Annex
features). [There is a Sngle exception to this rule: see Section 4.6.5.2]] Annex tests may use
any core feature.

Tests may be crested from one or more compilation units. If a test congsts of a dngle
compilation unit (a main subprogram only), the test code will be contained in asingle file. Tests
built from more than one compilation unit may require multiple files. Moreover, some
compilation units, caled foundation code, may be used by more than one test. Even in these
cases, the resulting tests are grictly independent: if test A and test B use the same foundation
code, the results of processing (and running, if gppropriate) A have no effect on the results of
processing (and running, if appropriate) B. Foundation code is more fully explained in Section
3.24.

Tedts are named using conventions that provide (limited) information about the test. The test
naming conventions are explained in Section 3.4. Each test belongs to a single test class that
indicates whether it isor is not an executable test. Test classes are explained in Section 3.3.

In addition to test code and foundation code, there is code on which many or al of the
executable tests in the suite depend (eg., package Report, package ImpDef, package
TCTouch). Some of this code must be customized to each implementation. There is dso code
that must be used to build support tools used to customize the suite of tests to an
implementation. The customization process is described in Section 4.3.

3.2.3 Legacy Tests

Many tests check only language features that are common to Ada83 and Ada95. The vast
mgority of these tests came unmodified from the ACVC 1.12 suite. Some tests were modified
to check for the correct implementation of Ada95 rules in cases where language rules changed
from Ada83.

ACATS2.5User'sGuide 1 April 2002 11

3.2.4 Foundation Code

Some tests use foundation code. Foundation code is reusable across multiple tests that are
themsaves independent of each other. It is intended to be compiled and included in an
environment as part of the compilation process of atest. If the test is executable, the foundation
code must be bound with dl other code for the test prior to execution.

Foundation code is dways expected to compile successtully; it is never expected to be run by
itself. Foundation code is nat, in and of itsdf, atest, and is therefore not characterized by atest
class (see 3.3). One may think of it as providing some utility definitions and routines to a number
of different tests. Names of foundation units (and therefore names of files containing foundation
code) are distinguished as described in Naming Convention, Section 3.4.

3.2.5 Special Core Tests

This section identifies tests that gppear in the Core (Snce ther requirements are enunciated
there) but that may be graded as non-supported for implementations not claiming support of
certain Specialized Needs Annexes.

Annex C Requirements

Section 13 of [Ada95] includes implementation advice paragraphs. The ACATS does not
require implementations to conform to those paragraphs unless they claim support for Annex C,
Systems Programming (cf. C.2(2): “The implementation shal support a least the functiondity
defined by the recommended levels of support in Section 13.”)

Tests that check conformance to the implementation advice are listed below:

CD10001 CD30005 CD40001
CD20001 CD33001 CD72A01
CD30001 CD33002 CD72A02
CD30002 CD30004 CD90001
CD30003

Implementations that claim support for Annex C are required to process and pass the tests
listed above.

Implementations that do not clam support for the appropriate Annexes are ill required to
process these tests. Such implementations may reject the lines marked with the specia comment
"-- ANX-C ROMT", in which case the test will be graded as "unsupported'. If an
implementation accepts such linesin one of these tests, then the test must be bound (linked) and
executed, with a passed or not_applicable result.

12 1 April 2002 ACATS25User'sGuide

3.2.6 Foreign Language Code

Severd tests for Annex B features (and one Section 13 test) include files containing non-Ada
code (Fortran, C, Cobol). These tests must be compiled, bound, and run by implementations
that support foreign language interfaces to the respective non-Ada language. The foreign
language code uses only the most basic language semantics and should be compilable by dl
Fortran, C, and Cobol compilers, respectively. In cases where a foreign language does not
accept the code as provided, modifications are dlowable. See Section 4.3.6.

Files that contain foreign code are identified by a gpecid file extenson. See Section 3.4.2.
The tests that include Fortran code are: CXB5004 and CXB5005
The tests that include C code are: CXB3004, CXB3006, CXB3013 and CD30005

The test that includes Cobol codeis: CXB4009

3.3 Test Classes

There are ax different classes of ACATS tedts, reflecting different testing requirements of
language conformity testing. Each test belongs to exactly one of the Sx classes, and its
membership is encoded in the test name, as explained later. The purpose and nature of each test
category is explained below. The test classfications provide an initid indication of the criteria
that are used to determine whether a test has been passed or failed.

3.3.1 ClassA

Class A tedts check for acceptance (compilation) of language constructs that are expected to
compile without error.

An implementation passes a class A test if the test compiles, binds, and executes reporting
"PASSED". Any other behavior isafailure.

Only legecy tests are included in this class.

3.3.2 ClassB

Class B tedts check that illegal congtructs are recognized and treated as fatal errors. They are
not expected to successfully compile, bind, or execute. Lines that contain errors are marked "--
ERROR:" and generdly include a brief description of the illegdity on the same or following line.
(The flag includes a find “:” s0 that search programs can essly diginguish it from other
occurrences of the word “error” in the test code or documentation.) Some tests aso mark

ACATS2.5User'sGuide 1 April 2002 13

somelinesas"-- OK", indicating that the line must not be flagged as an error. Lines so marked
are often, but not aways, congtructs that were errorsin Ada83 but are correct in Ada9s.

An implementation passes a class B test if each indicated error in the test is detected and
reported, and no other errors are reported. The test fails if one or more of the indicated errors
are not reported, or if an error is reported that cannot be associated with one of the indicated
arors. If the test dructure is such that a compiler cannot recover sufficiently to identify dl
erors, it may be permissible to "split” the test program into separate units for re-processing (see
Section 4.3.6 for ingructions on modifying tests).

In some cases and for some congructs, compilers may adopt various error handling and
reporting srategies. In cases where the test designers determined that an error might or might
not be reported, but that an error report would be appropriate, the line is marked with "--
OPTIONAL ERROR:" or a gmilar phrase. In such cases, an implementation is alowed to
report an error or fail to report an error without affecting the find grade of the test.

3.3.3 ClassC

Class C tests check that executable constructs are implemented correctly and produce
expected results. These tests are expected to compile, bind, execute and report "PASSED" or
"NOT-APPLICABLE". Each class C test reports "PASSED", "NOT-APPLICABLE", or
"FAILED" based on the results of the conditions tested.

An implementation passes aclass C test if it compiles, binds, executes, and reports “PASSED”.
It fals if it does not successfully compile or bind, if it fals to complete execution (hangs or
crashes), if the reported result is"FAILED", or if it does not produce a complete output report.

The tests CZ1101A, CZ1102A, CZ1103A, and CZ00004 are treated separately, as described
inSection 4.4.2.

3.34 ClassD

Class D teds check that implementations perform exact arithmetic on large literd numbers.
These tests are expected to compile, bind, execute and report "PASSED". Each test reports
"PASSED" or "FAILED" based on the conditions tested. Some implementations may report
errors a compile time for some of them, if the literd numbers exceed compiler limits.

An implementation passes aclass D test if it compiles, binds, executes, and reports “PASSED”.
It passes if the compiler issues an gppropriate error message because a capacity limit has been
exceeded. It fails if does not report “PASSED” unless a capacity limits is exceeded. It falsiif it
does not successfully compile (subject to the above cavest) or bind, if it fals to complete
execution (hangs or crashes), if the reported result is "FAILED", or if it does not produce an
output report or only partidly produces one.

14 1 April 2002 ACATS25User'sGuide

Only legacy tests are included in this class.

3.3.5 ClassE

Class E tests check for condructs that may require ingpection to verify. They have specid
grading criteria that are stated within the test source. They are generally expected to compile,
bind and execute successfully, but some implementations may report errors at compile time for
sometests. The "TENTATIVELY PASSED" message indicates specid conditions that must be
checked to determine whether the test is passed.

An implementation passes a class E test if it reports "TENTATIVELY PASSED", and the
gpecid conditions noted in the test are satified. It dso passes if there is a compile time error
reported that satisfies the specid conditions. Class E tests fall if the grading criteria in the test
source are not satisfied, or if they fail to complete execution (hang or crash), if the reported
result is"FAILED", or if they do not produce a complete output report.

Only legecy tests are included in this class.

3.3.6 ClassL

Class L tests check that dl library unit dependencies within a program are satisfied before the
program can be bound and executed, that circularity among units is detected, or that pragmas
that apply to an entire partition are correctly processed. These tests are normally expected to
compile successfully but not to bind or execute. Some implementations may report errors at
compile time; potentidly illegd congructs are flagged with "-- ERROR:". Some class L tedts
indicate where bind errors are expected. Successful processing does not require that a binder
match error messages with these indications.

An implementation passes a class L test if does not successfully complete the bind phase. It
pasesaclassL tes if it detects an error and issues a compile time error message. It failsif the
test successfully binds and/or begins execution. An L test need not report "FAILED" (although
many do if they execute).

As with B-tests, the test designers determined that some constructs may or may not generate an
error report, and that either behavior would be appropriate. Such lines are marked with "--
OPTIONAL ERROR:" In such cases, an implementation is alowed to report an error or fall to
report an error. If an error is reported a compile time, the binder need not be invoked. If no
erors are reported a compile time, the binder must be invoked and must not successfully
complete the bind phase (asindicated by the inability to begin execution).

ACATS2.5User'sGuide 1 April 2002 15

3.3.7 Foundation Code

Files containing foundation code are named using the regular test name conventions (see Section
3.4). It may appear from their names that they represent class F tests. There is no such test
class. Foundation code is only used to build other tests, so foundation units are not graded.
However, if a foundation unit fals to compile, then the tests that depend on it cannot be
compiled, and therefore will be graded asfailed.

3.3.8 Specialized Needs Annex Tests

Specidized Needs Annex tests have no separate classfications and are classfied in the same
way as dl other tests. There are Class B, Class C, and ClassL SNA tests.

3.4 Naming Convention

This section describes the naming conventions used in ACATS 2.5, specificdly as they apply to
files. All file names are of the form <name>.<type>, where <type> is a one, two, or three
character extenson. File names indicate tes class, compilation order (if applicable), and
whether the test is implementation dependent or requires customization. When atest is included
inasgnglefile, <name> duplicates the test name. The same istrue of afoundation. In multiplefile
tedts, the first 7 characters of the file <name> are normaly the same as the name of the ted,
however in some cases, the Structure of the test requires that the file name be different from the
Ada unit. The gpplication of the conventions to testsis Sraightforward.

There are two different but smilar naming conventions used in ACATS 2.5. Legecy teds use
the naming conventions of early ACVC versons. Tests new since ACVC 1.12 use the new
convention. The conventions are consstently distinguishable at the 7th character of the name:
legacy names have aletter in the 7th position, whereas newer names have a digit.

16 1 April 2002 ACATS25User'sGuide

3.4.1 Legacy Naming

The name of a legacy test is composed of seven or eight characters. Each character position
sarves a specific purpose as described in the table below. The firgt column identifies the
character pogtion(s) starting from the left, the second column gives the kind of character
alowed, and the third gives the corresponding meaning:

Position

1 Letter Test class (cf. Section 3.3)

2 Hexadecimal AIG chapter containing the test objective

3 Hexadecimal Section within the above Al G chapter

4 Alphanumeric Sub-section of the above AlG section

56 Decimal Number of the test objective within the above sub-section
Letter Letter identifier of the sub-objective of the above objective.
Alphanumeric optional - Compilation sequence identifier -- indicates the compilation

order of multiple files that make up a single test. This position is used
only if the test comprises multiplefiles.

The convention isillustrated in Figure 1.

Sometimes
Used compilation order
b\a §008 l.ada
Alwavs I\ sequence
class obiective number
Used

AIG (Ada83) ref

Figure 1. Legacy File Name Convention

In multiple file tests, the intended order of compilation is indicated by a numerd a postion 8.
Thefirst file to be compiled has'0', the second has '1', and so forth.

The chapter and section numbers of the AlG correspond to those in [Ada33].

Note: The use of a ninth character (‘'m) to indicate the file containing the main subprogram has
been discontinued. The following table ligts the files containing the main subprograms of the
legacy multiplefile tests.

AD7001CO B38103E0 B83003B0 B83004D0
AD7001D0 B63009C3 B83004B0 B83024F0
B38103C3 B73004B0 B83004C2 B83EO1EO

ACATS2.5User'sGuide 1 April 2002 17

B83E01FO BA1020B6 C83024E1 CA3011A4

B86001A1 BA1020CO C83F01C2 CAS5003A6
B95020B2 BA1020F2 C83F01D0 CA5003B5
BA1001A0 BA1101B0O C83F03C2 CA5004B1
BA1010A0 BA1101C2 C83F03D0 CC3019B2
BA1010BO BA1109A2 C86004B2 CC3019C2
BA1010CO BA1110A1 C86004C2 LA5001A7
BA1010D0 BA2001F0 CA1011A6 LA5007A1
BA1010E0 BA2003B0 CA1012A4 LAS007B1
BA1010F0 BA2011A1 CA1012B4 LAS007C1
BA1010G0 BA3001A0 CA1013A6 LAS007D1
BA1010HO BA3001B0 CA1014A0 LAS007E1
BA101010 BA3001CO CA1020E3 LAS007F1
BA1010J0 BA3001E0 CA1022A6 LAS007G1
BA1010K0 BA3001F0 CA1102A2 LA5008A1
BA1010LO BA3006A6 CA2001H3 LAS5008B1
BA1010M0O BA3006B4 CA2002A0 LAS5008C1
BA1010NO C38108C1 CAZ2003A0 LAS008D1
BA1010P0 C38108D0 CAZ2004A0 LAS008E1L
BA1010Q0 C39006C0 CA2007A0 LAS5008F1
BA1011BO C39006F3 CAZ2008A0 LAS008G1
BA1011CO C64005D0 CA2009C0

BA1020A0 C83022G0 CA2009F0

The file name extenson is three characters long. There are four extensons

.ada A file that contains only Ada code. It does not require any pre-processing to create a
compilable test. It will be submitted directly to the implementation for determination of test
results. All implementations must correctly process these tests.

.dep A file that has a test involving implementation-dependent features of the language. These
tests may not apply to al implementations.

tst A file that has "code" that is not quite Ada; it contains "macro" symbols to be replaced by
implementation-dependent values, and it must be customized (macro expanded) to prepare it
for compilation (see Section 4.3.2). Once customized, the resulting test must be processed as
indicated by its class.

.adt A file that has been modified by the macro processor. It contains only Ada code
and may be submitted to the implementation for results. All implementations must correctly
process these tests. There are no files in the ACATS distribution with this extension; they are
only produced as the output of the macro processor.

Tests developed since ACVC 1.12 use different file name extensions.

Note that legacy tests have not been renamed for ACATS 2.5. Since [Ada95] includes some
organizational differences from [Ada83], this means that the name of a legacy test sometimes will
not correspond to the clause of [Ada95] in which the tested feature is described.

18 1 April 2002 ACATS25User'sGuide

3.4.2 ACATS25Naming

The name of an Adad5 test is composed of seven or eight characters. Foundation code has a
name composed of seven characters. The use of each character podtion is described below.

The firgt column indicates the character pogition(s) starting from the left, and the second column
indicates the kind of character dlowed, and the third column gives the corresponding meaning:

Position

1 L etter Test class, foundations are marked 'F'

2 Alphanumeric If other than an 'x', the section of [Ada95] describing the feature under
test. An'x' indicates that the test includes one or more features from an
annex of [Adad5]

3 Alpha-numeric Core clause or annex letter identifier (either core or Specialized Needs
Annex)

Hexadecimal Sub-clause (if acoretest), or clause (if an annex test)

5 Alphanumeric Foundation identifier (alphabetic, unless no foundation is required, in
which casea'0’)

6-7 Decimal Sequence number of this test in a series of tests for the same clause;
foundation code will have "00".

8 Alphanumeric optional - Compilation sequence identifier -- indicates the suggested or

required compilation order of multiple files that make up asingletest (Ois
compiled first). This position is used only if the test comprises multiple
files.

This convention isilludrated in Figure 2.

Sometimes main nrocedure
Used compilation order

I
ba300131.am

/
/

clause

seauence

Alwavs class or annex

Used section clause or foundation
or ‘X' subclause

Figure 2. Naming conventionin ACATS 2.5

Thefile name extenson is aone or two character file name extenson. There are Sx extensons.

.a A file that contains only Ada code (except for configuration pragmas in the case of some
Specialized Needs Annex tests). It does not require any processing to prepare it for
compilation (unless configuration pragmas must be handled separately). It is normally
submitted directly to the implementation for determination of test results.

ACATS2.5User'sGuide 1 April 2002 19

.am A file that contains the main subprogram for a multi-file test. Generally, this extension is used
for only one file of atest. In rare cases (some Annex E tests), a multi-file test may have more
than one file containing a "main" subprogram; in such cases, the correct testing procedure is
described in the Special Requirements section of the test prologue.

.aw A file that has "code" that is not quite Ada; it contains one or more designated strings that
must be replaced by a character from the upper half of 1SO8850-1 (Latin-1) (see Section 4.3.3).
The resulting test must be compiled and run as all other class C tests.

ftn A file that contains Fortran language code and must be compiled by a Fortran compiler. These
files are used by tests that check aforeign language interface to Fortran.

.C A file that contains C language code and must be compiled by a C compiler. These files are
used by tests that check aforeign language interfaceto C.

.cbl A file that contains Cobol language code and must be compiled by a Cobol compiler. These
files are used by teststhat check aforeign language interface to Cobol.
A test that depends on foundation code has an aphabetic character in the fifth position of its
name. The required foundation will have the same characters in the second through fifth
positions of its name. For example, C123Axx depends on F123A00.

3.4.3 MultipleFile Tests

When tests are contained in multiple files (i.e, compilation units are contained in different files),
the file names are rdated. The first saven pogtions of the names of dl the files (other than
foundation files) comprised by a sngle test will be identicd. The eghth postion will provide a
digtinguishing dphanumeric which indicates the required compilation order. In legecy teds, the
main program is not indicated (see the table in section 3.4.1 for files contaning man
subprograms). For newer tests, the extenson ".am’ indicates the file with the main program.

All tests gpply the convention of naming the main subprogram the same as the file (excluding the
file extenson) plus the letter 'm' (for legacy tests only). For example, the legacy test, C39006F,
is contained in four filess named ¢39006f0.ada, ¢c39006f1.ada, ¢39006f2.ada, and
c39006f3.ada. The man sub-program of the test is contained in ¢39006f3.ada ad is
named "C390006F3M". The test C390006 is dso contained in four files, named ¢c3900060.4a,
c3900061.a, c3900062.a, and ¢c3900063.am. The man subprogram of the test is
contained in c3900063.am and is named " C3900063".

There are a smal number of Specidized Needs Annex tests for the Distributed Processing
Annex that require two active partitions and have two main subprograms. These tests have two
fileswith the .am extension to Sgnify the location of the (multiple) main subprograms.

3.5 Test Program For mat

Each test file is composed of a test prologue, documenting the test, and the test code proper.
All prologue lines are marked as comments. [The prologue in files containing non-Ada code is
marked according to the comment conventions of the foreign language]

20 1 April 2002 ACATS25User'sGuide

The prologue for al tests is based on that of legacy tedts. Legecy tests are generdly, but not
entirely, congstent in their use of the prologue. The format of the prologue between test files and
foundation filesis dightly different.

The generd format of the prologue is as follows:
<file name> - The distribution name of the file containing this prologue.
DISCLAIMER - Userestrictionsfor ACATS tests; included in all tests.
OBJECTIVE - A statement of the test objective; included in all tests.

TEST DESCRIPTION - A short description of the design or strategy of the test or other pertinent
information. Included in all newer tests but not generally included in legacy tests.

SPECIAL REQUIREMENTS - optional - Included if the test has any special requirements for
processing. Normally, this section will be found only in Specialized Needs Annex tests. For
example, an Annex E test may check for the comrect implementation of partitions; the
requirements for test partitioning and what to use as a main subprogram in each partition would
be documented in this section.

TEST FLES- optional - Included if the test depends on multiple files; identifies the component files of
amulti-file test.

APPLICABILITY CRITERIA - optional - Specifies the conditions under which the test can be ruled
inapplicable.

PASSFAIL CRITERIA - optional - Explains how to interpret compilation, binding, and/or run-time
results for grading the test.

MACRO SUBSTITUTIONS - optional - Identifies the macro symbol(s) in the file that must be replaced
and provides a brief description of what the replacement(s) represent.

CHANGE HISTORY - History of thetest file. Included in all tests.

All tests have the line immediately after the disclamer marked "--*". The newer tests have the
line after the last prologue line (before the first line of executable code) marked "--!" No other
comment lines are marked with those conventions, so the next line after the disclamer and the
fird line of code may be found quickly with an editor search.

Some tests are composed of multiple files (other than foundation code). Rather than repeating
the complete prologue in each file, an dternate approach has been used. The file containing the
main program has the complete prologue; the other, related files have those sections that apply
to files (TEST FILES, CHANGE HISTORY') and refer to the main file for the other sections.

ACATS2.5User'sGuide 1 April 2002 21

3.6 General Standards

ACATS tests were developed to a genera set of standards. To promote a variety of code
styles and usage idioms in the tests, standards were not necessarily rigoroudy enforced but were
used as guiddines for test writers. A maximum line length of 79 characters was used to enhance
electronic digribution of tests (except when specific testing requirements dictated otherwise,
usudly in .dep and .t files). Tests tend to be about 120 executable lines long, though many
tests deviate from this norm (either longer or shorter) to achieve a design that focuses on the
objective and a readable, maintainable test. Sometimes complex objectives have been divided
into sub-objectives to achieve complete coverage in comprehensible, maintainable tests. Some
tests check multiple sub-objectives, in other cases, sub-objectives are checked in separate
tests.

Legacy tests use only the basic 55-character set (26 capita letters, 10 digits, and 19
punctuation marks). Unless there is a specific test requirement, numeric values are in the range
(-2048..2047), which can be represented in 12 bits. Numeric values are generdly in the range
(-128..127). Tests new to ACATS 2.x use both upper and lower case letters and may use
larger numeric values (but within the range (-65536..65535) except in rare cases).

Legacy tests tend to use as few Ada features as necessary to write a salf-checking executable
test that can be read and maintained. Newer tests tend to exhibit a usage-oriented style,
employing arich assortment and interaction of festures and exemplifying the kind of code styles
and idioms that compilers may encounter in practice.

In the newer tests, Ada reserved words are entirely in lower case. Identifiers normaly have their
initid letter capitalized. Every atempt has been made to choose meaningful identifiers. In B class
tests, identifier names often provide a clue to the specific case or Stuation under test. In C class
tedts, identifiers are normally chosen to help document the test design or the intent of the code.

The newer executable tests generaly provide some visua separation of those test eements that
focus on conformance issues from those that govern the flow of a test. For example, there is
frequently a need to establish preconditions for a test and examine pogt-conditions after a
section of test code has executed. To distinguish between congtructs (types, objects, etc.) that
are part of the test code and those that are artifacts of the testing process (e.g., pre-, post-
conditions), the latter have "TC " prefixed to the identifier name. This prefix is shorthand for
"Test Control".

3.7 Test Structure
Executable tests (class A, C, D, and E) generally use the following format:

22 1 April 2002 ACATS25User'sGuide

wi th Report;
procedure Testname is
<decl arati ons>
begi n
Report. Test ("Testnane", "Description ...");

<test situation yielding result>

if Post_Condition /= Correct_Val ue then
Report. Fail ed ("Reason");

end if;

Report. Resul t;
end Test nane;

The initid cal to Report.Test prints the test objective using Text_10 output. After each section
of test code, there is normaly a check of post conditions. The if statement in this kedeton is
such a check; unexpected results produce a cal to Report.Failed. The sequence of test code /
check of results may be repeated severd times in a single test. Findly, there is a cdl to
Report.Result that will print the test result to Text 1O output. Often, but not dways, this
dtructure in enclosed in a declare block.

One or more cdls to Report.Faled will report a result of "FAILED" and a brief suggestion of
the likely reason for that result.

More complex tests may include cals to Report.Faled in the code other than in the main
program, and therefore exhibit the following format for the main procedure:

wi th Report;
procedure Testname is
<decl arati ons>

begi n
Report. Test ("Testnane", "Description ...");
Subt est _Cal |

Report. Resul t;
end Test nane;

Fail conditions are detected in subprograms (or tasks) and Report.Failed is caled within them.

Occasondly, as atest is running, it will determine thet it is not gpplicable. In such a case, it will
cal Report.Not_Applicable that will report a result of "NOT_APPLICABLE" (unless there is
aso acdl to Report.Failed).

Often, atest calls one of the functions Report.Ident_Int or Report.Ident_Bool to obtain a vaue
that could be provided as a literal. These functions are intended to prevent optimizers from
eiminating certain sections of tet code. The ACATS suite has no intention of trying to
discourage the application of optimizer technology, however satisfactory testing of language

ACATS2.5User'sGuide 1 April 2002 23

features often requires the presence and execution of gspecific lines of test code.
Report.Ident_Int and Report.ldent Bool are structured so that they can be modified when
needed to defeat optimizer advances.

Class B tests may be structured differently. Since they are not executable, they normaly do not
include cals to Report. Test or Report.Result (since those lines of code would have no output
effect). Instead, intentiond errors are coded that invoke specific legdity rules. The source code
includes comments that document expected compiler results. Legd congructs may aso be
included in B class tests. Congtructs that are dlowed by the legdity rules are marked "-- OK";
congructs thet are disdlowed are marked "-- ERROR:". Thereis usudly a brief indication of the
nature of an intentiona error on the same line or the line following a comment. The indications of
expected results are gpproximatdy right justified to the code file margin, about column 79, for
quick visud identification.

Class L tests are multifile tests with illegdities that should be detected at bind time. They are
generdly structured like class C tedts, often with calls to Report. Test and Report.Result, but
they are not expected to execute.

3.8 Délivery Directory Structure

The ddivery of ACATS tedts is structured into a directory tree that reflects the organization of
the test suite and support code. See Fig. 3.

The top-level directory contains the support subdirectory, the docs subdirectory, and a
subdirectory for each mgor grouping of tests. The support subdirectory contains al support
packages (Report, ImpDef, TCTouch) and the source code for all test processing tools (Macro
expander, Wide Character processor). Each of the other subdirectories contains al tests that
begin with the indicated prefix. For example, dl of the B2* tests are in the b2 subdirectory; al
of the CXH* tests are in the cxh subdirectory. Note that al of the A* tedts are in the a
directory, dl of the D* tests are included in the d subdirectory, and al of the E* tedts are
included in the e subdirectory. The directory contains the L tests for the core; other L tests are
in directories named with three letters, indicating the class (1) and the Specialized Needs Annex
to which the tests gpply.

Subdirectories that would be empty are not stubbed.

Figure 3 sketches this scheme, but does not show complete detail. A list of dl subdirectoriesis
included in Section 4.2.2.

24 1 April 2002 ACATS25User'sGuide

ACATS 25

a b2..be bxa.bxh c2..ce cxa..cxh cz d e | Ixd.. Ixh docs support

note: subdirectorv names and connectina line links
are not a complete list of subdirectories

Figure 3. Delivery Directory Structure

3.9 File Format

To conserve sace, dl files in the delivered ACATS 2.5 (including test files, foundation files,
and support files) have been compressed. Decompressed files (see Section 4.2.2) use only
ASCII characters. Other than the documentation files, no formatting control characters, rulers
or other information intended for word processors or editors is included in the files. (The
documentetion files are al provided as ASCII text files, but a verson formatted for Microsoft
Word 97 is dso provided for greater readability).

Files with the .zip extenson have been compressed using a DOS zip utility; files with the .Z
extension have been firgt put in Unix tar format and then compressed with Unix compress.

ACATS2.5User'sGuide 1 April 2002 25

| 1. Install Software

'

2. Tailor Software

'

|2.1 Modify Package ImpDef |

2.2 Modify tests as needed
process .tst and .aw files

+ if required
2.2 b Define function declarations
modify FCNDECL package specification

create FCNDECL package body
replace macro substitutions with function calls

2.3 Inspect reporting mechanism
modify package Report if needed

3. Process Support Files

v ¥

3.1 Compile: 3.2 Verify reporting mechanism
REPSPEC SPPRT13 and file /0 implementation
REPBODY CHECKFIL process CZ tests

IMPDEF LENCHECK verify results
FCNDECL TCTOUCH
ENUMCHEK

Y

4. Establish Command Scripts
Define compiler options
Omit withdrawn tests
Account for order dependencies
Compile class F files

Compile class B tests

Compile and bind class
L tests

Compile, bind, execute
class A,C,D,E tests

26

5. Process ACATS Tests

{

6. Grade Test Results

if reauired

7. Address Problems or Issues

Withdrawn test nrocessed?
Test anplicabilitv?

Incorrect brocessina order?
Proaram lihrarv carrinted?

Incorrect parameterization?
B-test slit reauired?
Test dispute?

8. Renrocess and/or
Regrade Problem Tests

[Testina Complete

Figure4 (Cont.) Usingthe ACATS

1 April 2002

ACATS 2.5 User'sGuide

4. Usng The ACATS

4.1 Introduction

There are eight mgor Sepsinvolved in usng the ACATS test suite; two of them are sometimes
not required. The seps are: ingdling the software, tailoring the software, processing the support
files, establishing command scripts, processng the ACATS teds, grading the test results,
addressing problems (if necessary), and reprocessing problem tests (if necessary). The first Sx
of these tasks must be completed successfully to accomplish a test run. The first four normally
need be completed only once for each ACATS release. Each step is explained in the following
sections. The flow from one to the next isilludrated in figure 4.

4.2 Installation of the ACATS Test Suite

The ACATS test suite must be unloaded from the ddivery medium or downloaded from a
delivery site before it can be unpacked, customized for an implementation, run, and graded.

4.2.1 Contentsof the ACATSDelivery

The delivery consgts of 8 archives (sets of compressed files) or 8 compressed tar files. Each
archive or compressed tar file contains compressed versons of ACATS software (ted,
foundation, and/or support code) structured into a directory tree. Files must be extracted from
the archives. Each archive contains a readmex.txt file (where X' is a digit representing the
number of the archive), which contains decompression suggestions and an overview of the
contents of the archive or tar file. These files are not considered part of the ACATS, they exist
S0 that someone finding one of the archive files can identify what it is. The remainder of the
archive contents is described later in this section.

Usualy, some test errors will be noted in the test suite. If possible, the ACAA will correct the
erors and issue a corrected test. If a correction is not possble, the test will be withdrawn.
Withdrawn tests are not used in conformity assessments. For a period after the issuance of a
corrected tedt, either the origina or the corrected test can be used for conformity assessment.
Seethe ACAA's procedures [Pro01] for details.

The ACAA dso will issue new tests periodicaly. As with modified tests, new tests must be
available for aperiod of time before they are required in conformity assessments.

These changes are documented in the ACATS Modification List (AML). Thislig includes a list

of dl new tegts, dl modified tested, and al withdrawn tests, and an indication as to when each
will be (or is) required for conformity assessments. Each verson of the modification list is given

ACATS2.5User'sGuide 1 April 2002 27

a suffix letter. An archive and tar file containing the new and/or modified tests is available. The
filesare named MOD_2 5x, where X' represents the suffix |etter for the AML version.

These files can be found on the ACAA's web site:

www.ada-auth.org

The AML isdso digributed by e-mail. To receive these ligts, join the ACAA maliling list. To do
30, smply send a message to

listserv@ada-auth.org

with abody of

Join Acaa

4.2.2 Guideto Decompressing Files

The ACATS files are provided in two forms. compressed in zip format and compressed in Unix
compress format. Zipped files are included in 8 zip archives (files) with the file extenson .zip.
Eight Unix compressed files, with extenson .Z, contain Unix tar files This section provides
generic indructions for uncompressng them. These indructions are not the only ways to
uncompress the files; sophigticated users may wish to use their own procedures.

If the ingructions below are used, the following subdirectories will have been crested and
populated with test files after dl decompresson:

28

.lacats2_5/a
.lacats2_5/b2
.lacats2_5/b3
.lacats2_5/b4
.l acats2_5/b5
.lacats2_5/hb6
.l acats2 5/ b7
.lacats2_5/hb8
.lacats2_5/b9
./ acats2_5/ba
.lacats2_5/bb
.lacats2_5/bc
./ acats2_5/bd
.lacats2_5/be
./ acats2_ 5/ bxa
.lacats2_5/bxb
.lacats2_5/c2
./acats2 _5/c3

.lacats2_5/c4
.lacats2_5/c5
.lacats2_5/c6
.lacats2_5/c7
.lacats2_5/c8
.lacats2_5/c9
.l acats2 5/ca
.lacats2_5/cb
.lacats2_5/cc
.lacats2_5/cd
.lacats2_5/ce
.lacats2_5/cz
.lacats2_5/d
.lacats2_5/e
.lacats2_5/1
.lacats2_5/cxa
.lacats2_5/cxb
.lacats2_ 5/ bxc

1 April 2002

.lacats2_5/bxd
.l acats2_ 5/ bxe
.lacat s2_5/ bxf
.l acats2_5/ bxg
.lacats2_5/bxh
.lacats2_5/cxc
.lacats2 5/ cxd
.lacats2_5/cxe
.lacats2_5/cxf
.lacats2_5/cxg
.lacats2_5/cxh
.lacats2_5/1xd
.lacats2_5/1xe
.lacats2_5/1xh
.lacats2 5/docs
.lacats2_5/support

ACATS 2.5 User'sGuide

Note that the names are given here in al lowercase; some systems may creste lowercase
names. The path separator, shown here as'/', may aso differ.

4.2.2.1 Decompressing Zipped Files

All ACATS files have been compressed (zipped) into compressed archives (zip-files) that have
the MS-DOS file extension "zip". A DOS utility was used to compress them. They must be
decompressed before they can be further processed. A decompression utility is available from
the source of the ACATS didribution. All ACATS 2.5 files may be decompressed using the
following steps. Approximatdy 25 MB of free space on a DOS machine hard drive will be
required to accomplish the decompression using this technique.

Creste adirectory on the hard disk to contain ACATS. In these examples, we assume the name
is "acas?2 5", but any name can be used. Copy each archive (file with zip extenson) to the
hard disk in the new directory. Decompress it insuring that directories are used. For the "unzip"
program, this is the default setting. For the "pkunzip” program, this is the -d option. For the
"winzip" program, insure that "Use Directory Names' is checked. Also, insure thet the files are
decompressed into the proper directory. For command line decompressors, this means insuring
that the current subdirectory is acats2 5. For "winzip", this smply means selecting acats? 5 as
the extract path.

For example, usng unzip, and assuming that the archive nameis ACATS2.zip, type
cd acats2 5

to set the proper directory, and
unzip ACATS2

to extract thefiles.

The files were compressed on a Windows system, where <CR><LF> is used as a line
terminator. Decompressors for other systems using other line terminators should be able convert
the line terminators. The ACAA has a short Ada program which converts afile from Windows
to Unix format; please send the ACAA mail a agent@ada-auith.org to request it if needed.

After dl files have been extracted from the archive, ddete the archive file from the hard disk if
you wish to conserve space.

Asit decompresses files, unzip will restore the directory structure of the files, creating al needed
subdirectories.

Some users may prefer to work with ACATS files in an dternate directory structure or none at
al. If the unzip utility isinvoked with the "-j" option, dl filesin the archive will be decompressed

ACATS2.5User'sGuide 1 April 2002 29

and placed in the loca working directory. In other words, none of the above subdirectories will
be created. Since there are too many ACATS files to fit into aroot DOS directory, if you wish
to put dl filesin asngle directory, you must first create a subdirectory (e.g., mkdir \ACATYS)
and unzip dl archivesthere.

4.2.2.2 Decompressing Unix Compress Files

All ACATS files have been induded in 8 Unix tar format files and then compressed usng the
Unix compress utility. To creste a st of ACATS files, firs copy the compressed files
acats257?.tar.Z from the distribution source to a hard drive. Uncompress the file with the Unix
command

uncompress acats25?.tar.Z

(note that particular Unix implementations may have different formats or require specific
qudifiers) After the ACATS file has been uncompressed, it must be untarred. Move to the
directory where you want the ACATS2_5 directory to be created and then untar each of the
ACATSfiles

tar -xvf <path>/acats25?.tar

where <path> is the location of the uncompressed tar file.

Please note that these are generic indructions and may need to be customized or modified for
specific systems.

4.2.3 FilesWith Non-Graphic Characters

Four ACATS test files contain non-graphic (control) characters that may be lost or corrupted in
the file transfer and decompression process. The user must ensure that the proper characters
are restored as necessary. The following paragraphs describe the four tests.

30 1 April 2002 ACATS25User'sGuide

4.2.3.1 A22006C

This test checks that format effectors can appear a the beginning of a compilation. At the
beginning of the file, the firg line is empty (indicated by the system's end-of-line marker, which
may be a sequence of one or more characters or may be indicated by some other means). The
second line contains 20 characters. 6 control characters followed by the comment delimiter, a
gpace, and the file name (A22006C.ADA). The control characters are:

Common Name AdaName ASCIl Vaue

Decimd Hex
Carriage return ASCII.CR 13 oD
Carriagereturn ASCII.CR 13 oD
Vertica tab ASCIIL.VT 11 0B
Line feed ASCII.LF 10 0A
Linefeed ASCII.LF 10 0A
Form feed ASCII.FF 12 oC

4.2.3.2 B25002A

This test checks that control characters (other than format effectors) are not permitted in
character literals. The expected characters are documented in source code comments, using the
customary 2- or 3-letter mnemonics. The 28 characters are used in their ASCII order, and have
ASCII values 0 through 8, 14 through 31, and 127.

4.2.3.3 B25002B

This test checks that the five format effector characters cannot be used in character literds.
There are two groups of code containing the illegal characters, in each group, the characters
gppear in the order given below:

Common Name AdaName ASCII Vaue
Decimd Hex
Horizonta tab ASCIILHT 9 09
Verticd tab ASCIIVT 11 0B
Carriage return ASCII.CR 13 oD
Linefeed ASCII.LF 10 0A
Form feed ASCII.FF 12 oC

ACATS2.5User'sGuide 1 April 2002 31

4.2.3.4 B26005A

This test checks the illegdity of usng control characters in gring literdls. Each dring literd
(ASCII codes 0 through 31 and 127) is used once, and the uses appear in ASCII order. Each
use is adso documented in a source code comment, which identifies the character by its common
2- or 3-character mnemonic.

4.3 Tailoringthe ACATS Test Suite

There are some files in the delivery that require modification before ACATS 2.5 is ready for
processing by an Ada implementation. Package ImpDef (impdef.@) must be edited to include
vaues suitable for proper testing of an implementation if the defaults are not acceptable. ImpDef
is a package that is new to the 2.X suite, and dl users will have to do this modification. The
macrosdfs file must smilarly be edited to incdlude vaues suitable for testing. This file is dightly
different from previous ACATS suites, s0 dl users will have to modify it, but most changes can
be retained from previous versions. All .tst files (including package Spprt13 (spprtl3stst)) must
have their macro symbols replaced by implementation specific vaues. A body for FenDecl
(fcndecl.ada) must be provided if necessary. Findly, Package Report (repbody.ada) must be
modified if necessary; previous modifications can generaly be carried forward. The required
cugtomization is described in the following sections.

4.3.1 ImpDef Customization

All implementations must customize impdef.a for ACATS 2.5 unless they wish to rely on the
defaults provided. ImpDef must be part of the environment whenever a test that depends on it is
processed. Note that in ACATS 2.5, ImpDef uses child libraries for the Specialized Needs Annexes.
The only ImpDef children that need be modified are those associated with the SNAs that the
implementer intendsto test during a conformity assessment.

ACATS tests use the entities in ImpDef to control test execution. Much of the information in
ImpDef relates to the timing of running code; for example, the minimum time required to dlow a
task switch may be used by a test as a parameter to a dday statement. The time to use is
obtained as an ImpDef constant.

impdef.a was added as a new feature to ACATS 2.0 auite. It is related to macro.dfs in that it
must be customized with values specific to an implementation and ACATS tests will rely on
these values. ImpDef is different in the following respects

. Defaults are provided. Some implementations may be able to rely entirely on the default values
and subprograms, so no customization would be necessary.

. Some implementations may choose to provide bodies for one procedure and/or one function.
Bodies so provided must satisfy requirements stated in ImpDef.

32 1 April 2002 ACATS25User'sGuide

. It is not used for macro expansion of tests. Instead, ImpDef must be available at compile time (i.e,
included in the environment) for tests that rely uponiit.

There are child packages of ImpDef for each of the Specidized Needs Annexes. An
implementation that uses one or more of the Specialized Needs Annexes in its conformity
assessment must customize the associated ImpDef child packages (or rely on their defaults) and
must set the appropriate Booleansin impdef.a. Specific ingtructions for the values required by
ImpDef and its children are included in impdef.a, impdefc.a, impdefd.a, impdefe.a,
impdefg.a, and impdefh.a. (Note that impdefc, for example, refers to Annex C.) A copy of
ImpDef isincluded in Appendix B.

4.3.2 Macro Defs Customization

The only change to macro.dfs from ACATS 2.4 to ACATS 2.5 was to delete several definitions
used only for tests deleted from ACATS 2.5. A version of macro.dfs that was tailored for ACATS
2.4 should bevalid for ACATS 2.5 unless some implementation characteristics have changed.

Tedts in files with the extension ".tst" contain symbols that represent implementation dependent
vaues. The symbols are identifiers with ainitid dollar sign ('$). Each symbol must be replaced
with an appropriate textua value to make the tests compilable.

The Macrosub program digtributed with the ACATS can automaticaly perform the required
subdtitutions. This program reads the replacement vaues for the symbols from the file macro.dfs
and edits dl the ".t3" teds in the suite to make the needed changes. It writes the resulting,
compilable programs into files with the same name as the origina but with the extenson .adt. A
sample macro.dfs is included with the ACATS, and is included in Appendix D; it contains
decriptions of al the symbols used in the test suite.

Subdtitutions using the Macrosub program may be made as follows:

1 Edit the file macro.dfs using values appropriate for the implementation. Symbols that use the
value of MAX_IN_LEN are calculated automatically and need not be entered.

2. Create a file called tsttests.dat that includes all of the .tst test file names, and their directory
locationsif necessary. A version of thisfile (without directory information) is supplied.

3. Compile and bind MacroSub.

4, Run MacroSub.
The program will replace dl symbols in the .t files with vaues from macro.dfs. Test files with

the origind test name but the extension .adt will contain the processable tests. The origina .tst
fileswill not be modified.

ACATS2.5User'sGuide 1 April 2002 33

4.3.3 Processing for Wide Character Tests

There are two tests in ACATS 2.5 that require preprocessing. They must be processed with the
Wide Character tool; the macro expander tool will not work with them. Information for these testsis
not included in macro.dfs.

There are two testsin ACATS 2.5 that check an implementation’s ability to process characters
drawn from the full set of graphic symbols of 1SO 10646 BMP (See [Ada95] 2.1). Since such
characters cannot be included in the distribution media in away that can reliably be read by an
arbitrary implementation, they contain character sequences that must be replaced by the
intended character. A specid tool, the WideChr program, which will automaticaly perform the
required subgtitutions, has been included with this digtribution.

The affected tests are contained in files with the extenson .aw. Each such test contains a sx or
eight character sequence of the form

or

"[abcd]”

Note that double quotes make up part of the specia sequence (acting as part of the escape
sequence). The processor will replace the dring with a character that is designated by
16#abcd#, where the alphanumeric characters ‘a, ‘b, ‘c’, ‘d’, are hexadecima digits. Note
that the strings to be replaced do not gtart with ‘$, and the replacement is synthetic, not
subgtitution. Therefore, the macro expander tool will not work with these tests.

The WideChr tool takes the desgnated tests as input. The names of the required tests are
included in the WideChr tool code as congtants. It reads path names for the tests from ImpDef.
The tool reads the tests, synthesizes the necessary replacements, and writes the resulting,
compilable programs into files with the same name as the origind but with the extenson .a

Subdtitutions using the WideChr program may be made as follows:

1 Edit the file impdef.a to indicate the path where the tests are located. This value will be
concatenated with the test name to form the complete name of afile.

2 Compile and bind WideChr.

3. Run WideChr.

The program will replace al specid sequencesin the .aw files with synthesized characters. Test
fileswith the origind test name but the extension .a, in the same path location as the origind .aw
files, will contain the processable tests. The origind .aw files will not be modified.

A 1 April 2002 ACATS25User'sGuide

4.3.4 Package SPPRT 13 and Function FcnDecl

Package SPPRT13 declares six congtants of type System.Address that are primarily used by
tests of Section 13 fegtures. It isin the file spprt13stst. As distributed, the package uses macro
symbols that must be replaced. In most cases, the subgtitution can be accomplished by the
macro substitution described in the preceding section. If gppropriate literds, congants, or
predefined function cdls can be used to initidize these congtants, they should be supplied in
macro.dfs. Otherwise, the package FCNDECL must be modified.

The versgon of SPPRT13 didributed with ACATS 25 is dightly different from the verson
distributed with ACVC 1.11. A body is not required for this package (and would, therefore, be
illegd in Ade9b).

All implementations should verify that package SPPRT13 can be properly customized using the
macro substitution technique. Note that in Ada95, abody for SPPRT13isillegal.

The specification for package FCNDECL is in the file fcndecl.ada. SPPRT13 depends on
FCNDECL (in acontext clause that both "with"sit and "use's it). As supplied with the ACATS,
FCNDECL is an empty package specification. If gppropriate literals, constants, or predefined
function calls cannot be used to customize the constants declared in SPPRT13, the implementer
must declare appropriate functions in the specification of FCNDECL and provide bodies for

them in a package body or with a pragma Import.

Modifications to FCNDECL mugt receive advance gpprova from the ACAL (and, if
necessary, the ACAA) before use in a conformity assessment.

4.3.5 Maodification of Package REPORT

All executable tests use the Report support package. It contains routines to automete test result
reporting as well as routines designed to prevent optimizers from removing key sections of test
code. The specification of package Report is in the file repspec.ada; the body is in
repbody.ada.

Under some conditions, the body of package Report may need to be modified. For example,
the target system for a cross-compiler may require a smpler 1/0 package than the standard
package Text_|O. In such a case, it may be necessary to replace the context clause and the 1/0
procedure names in the body of Report.

Modifications to Report must receive advance gpprova from the ACAL (and, if necessary, the
ACAA) before usein a conformity assessment.

ACATS2.5User'sGuide 1 April 2002 35

4.3.6 Allowed Test Modifications

Class B tests have one or more errors tha implementations must identify. These tests are
sructured such that, normaly, implementations can report dl included errors. Occasiondly, an
implementation will fail to find dl errors in a B-test because it encounters a limit (eg., error
cascading, resulting in too many error reports) or is unable to recover from an error. In such
cases, auser may Split asingle B-test into two or more tests. The resulting tests must contain al
of the errorsincluded in the origina test, and they must adhere as closely as possible to the style
and content of the origind test. Very often, the only modification needed is to comment out
ealier errors s0 that later errors can be identified. In some cases, code insartion will be
required. An implementation must be able to demonstrate that it can detect and report all
intended B-test errors.

Splits may dso be required in executable tedts, if, for example, an implementation capacity
limitations is encountered (eg., a number of generic indantiations too large for the
implementation). In very exceptiond cases, tests may be modified by the addition of a length
clause (to dter the default Sze of a collection), or by the addition of an eaboration Pragma (to
force an elaboration order).

Tests that use configuration pragmas (see 4.6.5.4) may require modification since the method of
processing configuration pragmas is implementation dependent.

Some tests include foreign language code (Fortran, C, or Cobol). While the features used
should be acceptable to dl Fortran, C, and Cobol implementations, respectively, some
implementations may require modification to the non-Ada code. Modifications must, of course,
preserve the input-output semantics of the (foreign language) subprogram; otherwise, the
ACATS test will report afalure.

All splits and modifications must be gpproved in advance by the ACAL (and, if necessary, the
ACAA) before they are used in a conformity assessment. It is the respongibility of the user to
propose a B-test Folit that satisfies the intention of the origina test. Modified tests should be
named by gppending an aphanumeric character to the name of the origind test. When possible,
line numbers of the origina test should be preserved in the modification.

All tests must be submitted to the compiler as distributed (and customized, if required). If atest
is executable (class A, C, D, E) and compiles successfully, then it must be run. Modified tests or
gplit tests may be processed next. Only the results of the modified tests will be graded.

If the ACAA has issued an ACATS Moadification List (see Section 4.2.1), then the required

modifications must be made. The permitted modifications may be made if desred (or if
necessary for the particular implementation).

36 1 April 2002 ACATS25User'sGuide

4.4 Processing the Support Files

After dl the files identified in Section 4.3 have been customized as needed and required, the
support files can be processed and the reporting mechanism can be verified.

4.4.1 Support Files

The following files are necessary to many of the ACATS tests Implementations that maintain
program libraries may wish to compile them into the program library used for conformity
assessment:

repspec.ada repbody.ada

impdef.a impdefc.a (If testing Annex C)
fcndecl.ada impdefd.a (If testing Annex D)
checkfil.ada impdefe.a (If testing Annex E)
lencheck.ada impdefg.a (If testing Annex G)
enumchek.ada impdefh.a (If testing Annex H)

spprtl3s.adt
(after macro substitution)
tctouch.ada

(Depending on loca requirements and drategy, it may adso be convenient to compile al
foundation code into the program library as well.)

442 "CZ" Acceptance Tests

Four tests having names beginning “CZ” are part of the ACATS suite. Unlike other tests in the
suite, they do not focus on Ada language features. Instead, they are intended primarily to verify
that software needed for the correct execution of the test suite works as expected and required.
They check, for example, to see that package Report and package TCTouch work correctly.

All CZ tests must execute correctly and exhibit the prescribed behavior for a successful
conformity assessment. CZ tests must be processed and run as the first step of a conformity
assessment to ensure correct operation of the support software.

The acceptance test CZ1101A tests the correct operation of package Report's reporting
facilities, including checks that Not_Applicable and Falled cdls are reported properly, and that
premature cdls cause failure. Therefore, CZ1101A will print some failure messages when it is
executed. The presence of these messages does not necessarily mean the test has falled. A
ligting of the expected output for CZ1101A isincluded in Appendix C (times and dates in the
actud output will differ).

ACATS2.5User'sGuide 1 April 2002 37

The acceptance test CZ1102A tests the correct operation of the dynamic value routines in
Report. This test should report "PASSED"; any other result condtitutes a test failure.

The acceptance test CZ1103A ensures the correct operation of procedure Checkfile. (Some of
the executable file 1/0 tests use a file checking procedure named Checkfile that determines an
implementation's text file characterigics. The source code for this procedure is in the file
checkfil.ada) CZ1103A checks whether errors in text files are properly detected, therefore,
CZ1103A will print some failure messages when it is executed. The presence of these messages
does not necessarily mean the test has failed. A listing of the expected output for CZ1103A is
included in Appendix C (times and dates in the actua output will differ).

The acceptance test CZ00004 produces output that verifies the intent of the conformity
assessment. It relies on ImpDef having been correctly updated for the conformity assessment
and produces output identifying the annexes (if any) that will be incuded as pat of the
conformity assessment. This test aso checks for the proper operation of the TCTouch package,
includes checks that assertion failures are reported properly, therefore CZ00004 will print some
falure messages when it is executed. The presence of these messages does not necessarily
mean the test has falled. A listing of the expected output for CZ00004 is included in Appendix
C; dnce this output includes vaues from the customization impdef, non-failure lines may vary
from those in the expected output. However, the number of lines and their relative positions may
not change.

4.5 Establishing Command Scripts

Users will often find it convenient to run large numbers of ACATS tests with command scripts.
This section discusses some of the issues to be considered in developing a script.

4.5.1 Command Scripts

All compiler options and switches that are appropriate and necessary to run the ACATS tests
mugt be identified and included in commands that invoke the compiler. The same is true for the
binder or any other post-compilation tools. Any implementation dependent processng of
partitions, configuration pragmas, and strict mode processing must be part of the scripts for
running tests thet rely on these festures.

A script should compile (only) al class B tests. It should compile and bind dl class L tedts; if

link errors are not explicitly given, the script should attempt to execute the L tests. It should
compiledl classFfiles. It should compile, bind, and execute dl class A, C, D, and E tests.

33 1 April 2002 ACATS25User'sGuide

4.5.2 Dependencies

A command script must take account of al required dependencies. As noted earlier, some tests
are composed of multiple test files. Also, some tests include foundation code, which may be
used by other tests. If afoundation is not aready in the environment, it must be compiled as part
of building the test. All files that are used in a test must be compiled in the proper order, as
indicated by the file name. For implementations that require the extraction individua compilation
units from test files before submission to the compiler, the individua units must be submitted to
the compiler in the same order in which they gppear in thefile.

4.6 Processing ACATS Tests

After the ACATS tests and support code has been ingtalled and dl required modifications and
preliminary processing have been completed, the suite can be processed by an implementation.
This section describes the tests required for conformity assessment, required partitioning, how
tests may be bundled for efficiency, and certain processing that may be streamlined. It dso
describes how the suite has been organized to dlow a user to focus on specific development
needs.

4.6.1 Required Tests

An implementation may be tested againgt the core language only or the core language plus one
or more Specialized Needs Annexes. All core tests (except as noted in 4.6.4) must be
processed with acceptable results for conformity assessment of the core language. All legacy
tests, as well as dl newer tests for clauses 2-13 and annexes A and B are core tedts.
Conformity assessment including one or more Specidized Needs Annexes requires that al tests
for the annex(es) in question be correctly processed in addition to dl core tests

Tedts that are not gpplicable to an implementation (e.g., because of size limitations) and tests
that report "NOT APPLICABLE" when run by an implementation must neverthdess be
processed and demonstrate appropriate results.

Tedts that are withdrawn on the current ACATS Modification List as maintained by the ACAA
need not be processed.

4.6.2 Tes Partitions

Unless otherwise directed by the Specid Requirements section of a tedt, dl tests are to be
configured and run in a sngle patition. The method of specifying such a partition is
implementation dependent and not determined by the ACATS. The only tests that must be run
in multiple partitions are those which test Annex E, Didtributed Systems.

ACATS2.5User'sGuide 1 April 2002 39

4.6.3 Bundling Test Programs

In some Stuations, the usua test processing sequence may require an unacceptable amount of
time. For example, running tests on an embedded target may impose significant overhead time
to download individud tests. In these cases, executable tests may be bundled into aggregates of
multiple tests. A set of bundled tests will have a driver that calls each test in turn; ACATS tests
will then be called procedures rather than main procedures. No source changes in the tests are
alowed when bundling; thet is, the only alowed change is the method of cdling the test.

All bundles must be approved by the ACAL (and, if necessary, the ACAA) to qudify for a
conformity assessment. It is the respongbility of the user to identify the tests to be bundlied and
to write adriver for them.

4.6.4 Processing That May be Omitted

A user may streamline processing of the ACATS tests to the grestest degree possible consistent
with complete processing of al tests.

Many Adad5 tests rely on foundation code. A foundation need not be compiled anew each time
a different test uses it. In a processng mode based on a program library, it is reasonable to
compile the code into the library only once and alow the binder to use the processed results for
each test that "with'"s the foundation.

A user may determine, with ACAL concurrence, that some tests require support that is
impossible for the implementation under test to provide. For example, there are tests that
assume the avalability of file /0O whereas some (embedded target) implementations do not
support file 1/0. Those tests need not be processed during witness testing; however, the
implementer must demondirate that they are handled in accordance with the language standard.
This demondration may be performed before witness testing, in which case it need not be
repeated.

Annex B tests that require foreign language code (Fortran, C, Cobol) to be compiled and
bound with Ada code need not be processed if an implementation does not support a foreign
language interface to the respective language.

Tests for the Speciadized Needs Annexes of [Ada95] need not be processed except by
implementations that wish to have Annex results documented. In that case, only the tests for the
annex in question (in addition to al core tests) need be processed. If any tests for a particular
Annex are processed, then dl tests for that Annex must be processed. If an implementation
does not support a feature in a Specialized Needs Annex test, then it must indicate the non-
support by reecting the test at compile time or by raising an appropriate exception & run time.
(See[Adagd5] 1.1.3(17).)

40 1 April 2002 ACATS25User'sGuide

No withdrawn test need be processed. Tests classified as Pending New in the current ACATS
Modification List also do not need to be processed. (Pending New tests are new tests included
with the ACATS for review purposes, and are not yet required for conformity assessment).

4.6.5 Testswith Special Processing Requirement

Some tests may require specid handling. These are primarily SNA tests, but some core tests
are affected. For example, distributed processing tests may require an executable image in
multiple partitions, where partitions are congtructed in an implementation specific manner. Redl-
time processing tests may have configuration pragmas tha have to be handled in an
implementation specific way. Numeric Processing tests require srict mode processing to be
sdlected. Each such test has a Specid Requirements section in the test header describing any
implementation specific handling that is required for the test.

A lig of dl such testsisincuded in Appendix A.

ACATS2.5User'sGuide 1 April 2002 41

4.6.5.1 Foreign Language Interface Tests

Annex B, Inteface to Other Languages, is pat of the Ada95 core language. Any
implementation that provides one or more of the packages Interfaces.C, Interfaces.COBOL, or
I nterfaces.Fortran must correctly process, and pass, the tests for interfaces to C, Cobol, and/or
Fortran code respectively, with the possble exception of tests containing actual foreign code.

An implementation that provides one or more of these Interfaces child packages must
successfully compile the Ada units of tests with actud foreign language code. If the
implementation does not support the actua binding of the foreign language code to Ada, these
tests may report binding errors, or may reect the pragma Import, in which case they may be
graded as ingpplicable. If the implementation supports the binding and an appropriate compiler
is avalable, the tests must execute and report "Passed”. If the implementation supports the
binding, but it is not feesble to have an gppropriate compiler available, then the tests may be
graded as ingpplicable by demongtrating that they fail to bind.

If one of the Interfaces child packages is not provided, then the corresponding tests may be
graded asingpplicable, provided they reject the corresponding "with" clause.

The testsinvalving interfaces to foreign code are listed in the following sections.

The foreign language code included in ACATS tests uses no specid or unique features, and
should be accepted by any standard (C, Cobol, or Fortran) compiler. However, there may be
didect problems that prevent the code from compiling correctly. Modifications to the foreign
language code are dlowable; the modifications must follow the code as supplied as closdly as
possible and the result mugt satisfy the requirements stated in the file heeder. Such modifications
must be approved in advance by the ACAL (and, if necessary, the ACAA). The method for
compiling foreign code is implementation dependent and not specified as part of the ACATS.
Ada code in these tests must be compiled as usud. The Ada code includes Pragma Import that
references the foreign language code. The link name of foreign language object code must be
provided in ImpDef. When dl code has been compiled, the test must be bound (including the
foreign language object code) and run. The method for binding Ada and foreign language code
is implementation dependent and not specified as part of the ACATS. The test must report
“PASSED” when executed.

4.6.5.1.1 C Languagelnterface
If the implementation provides the package Interfaces.C, the tests identified below must be
satisfactorily processed as described above.

The starred tests contain C code that must be compiled and linked if possible, as described

above. The C code is easly identifiable because the file has the extenson “.C”. The C code
may be modified to satify didect requirements of the C compiler. The C code files must be

12 1 April 2002 ACATS25User'sGuide

compiled through a C compiler, and the resulting object code must be bound with the compiled
Ada code. Pragma Import will take the name of the C code from ImpDef.

CD30005* CXB3005 CXB3010 CXB3015
CXB3001 CXB3006* CXB3011 CXB3016
CXB3002 CXB3007 CXB3012

CXB3003 CXB3008 CXB3013*

CXB3004* CXB3009 CXB3014

4.6.5.1.2 Cobol Language Interface
If the implementation provides the package Interfaces COBOL, the tests identified below must
be processed satisfactorily, as described above.

The starred test contains Cobol code that must be compiled and linked if possible, as described
above. The Cobol code is eadily identifiable because the file has the extenson “.CBL”. The
Cobol code may be modified to satisfy diaect requirements of the Cobol compiler. The Cobol
code files must be compiled through a Cobol compiler, and the resulting object code must be
bound with the compiled Ada code. Pragma Import will take the name of the Cobol code from
ImpDef.

CXB4001 CXB4004 CXB4007
CXB4002 CXB4005 CXB4008
CXB4003 CXB4006 CXB4009*

4.6.5.1.3 Fortran Language I nterface
If the implementation has a Fortran language interface, the tests identified beow must be
processed satisfactorily, as described above.

The darred tests contain Fortran code that must be compiled and linked if possble, as
described above. The Fortran code is eadly identifiable because the file has the extenson
“.FTN”. The Fortran code may be modified to satisfy didect requirements of the Fortran
compiler. The Fortran code files must be compiled through a Fortran compiler, and the resulting
object code must be bound with the compiled Ada code. Pragma Import will take the name of
the Fortran code from ImpDef.

CXB5001 CXB5003 CXB5005*
CXB5002 CXB5004*

ACATS2.5User'sGuide 1 April 2002 43

4.6.5.2 Testsfor the Distributed Processing Annex

The ACATS tests for the Digtribution Annex are gpplicable only to implementations that wish to
test this SNA. Not dl of these tests gpply to al implementations, since the annex includes some
implementation permissions that affect the gpplicability of some tedts.

The principa factors affecting test gpplicability are:
1. whether the Remote_Call_Interface pragmais supported;

2. whether a Partition Communication System (PCS) is provided (i.e., whether abody for System.RPC
is provided by the implementation);

3. whether the Real-Time Annex is also supported.

An implementation may test for the annex without providing a PCS. In order to test for the
Didribution Annex, an implementation must alow abody for System.RPC to be compiled.

4.6.5.2.1 Remote Call_Interface pragma

[Ada95] dlows explicit message-based communication between active partitions as an
dternative to RPC [E23(20)]. If an implementation does not support the
Remote Cdl_Interface pragma then the following tests are not gpplicable:

BXE2009 BXE4001 CXE4002 CXE4006
BXE2010 CXE2001 CXE4003 CXES5002
BXE2011 CXE2002 CXE4004 CXE5003
BXE2013 CXE4001 CXE4005 LXE3001

4.6.5.2.2 Partition Communication System
An implementation is not required to provide a PCS [E.5(27)] in order to test the Ditribution
Annex. If no PCSis provided then the following tests are not gpplicable;

CXE1001 CXE4001 CXE4003 CXEA4005
CXE2001 CXE4002 CXE4004 CXE4006

46523 System.RPC

Two tests provide a body for System.RPC. An implementation may include a private part that
includes declarations, such as additiond procedures and functions, that impose additiona
requirements on System.RPC. If an implementation includes additiona declarations, then the
same declarations (and implementations) may be added to the body of System.RPC in the tests
identified below. Declarations in the private part of the implementation’'s System.RPC do not
affect the applicability of the testsin this group.

CXES5002 CXES5003

44 21 March 2001 ACATS 2.5 User'sGuide

4.6.5.2.4 Real-TimeAnnex Support
Many implementations that support the Didtribution Annex will aso support the Red-Time
Annex. Test CXE4003 is designed to take advantage of Red-Time Annex features in order to
better test the Digtribution Annex.

For implementations that do not support the Red-Time Annex, tex CXE4003 must be
modified. This modification congsts of ddeting dl lines that end with the comment “--RT”.

4.6.5.25 Configuring Multi-Partition Tests

Some Didribution Annex tests require multiple partitions to run the test, but no more than two
partitions are required for running any of them. All multi-partition tests contain a main procedure
for each of the two partitions. The two partitions are referred to as “A” and “B” and the main
procedures for these partitions are named <test_name>_A and <test_name>_B respectively.
Each test contains indructions naming the compilation units to be included in each partition.
Mogt implementations will be primarily concerned with the main procedure and RCI packages
that are to be assgned to each partition; the remainder of the partition contents will be
determined by the norma dependency rules. The naming convention used in multi-partition tests
ad in making the partition assgnments. If the name of a compilation unit ends in
“ A<optiond_digit]>" then it should be assgned to partition A. Compilation units with names
endingin®_B<optiond_digit>" should be assgned to partition B.

Thefollowing tests require that two partitions be available to run the test:

CXE1001 CXE4002 CXE4006 L XE3002*
CXE2001* CXE4003 CXE5002
CXE2002 CXE4004 CXES003
CXE4001 CXEA4005 LXE3001

(*) Tests CXE2001 and LXE3002 contain a Shared Passve package and two active
partitions. They may be configured with ether two or three partitions. The two-partition
configuration must have two active partitions and the Shared Passve package may be assigned
to either one of the active partitions. The three-partition configuration conssts of two active
patitions and a dngle passve patition, and the passve patition will contain the single
Shared Passive package.

4.6.5.2.6 Running Multi-Partition Tests

All of the multi-partition tests include the package Report in both of the active partitions. In
order for the test to pass, both partitions must produce a passed message (except for
LXE3002 - see specid indructions for that test). If either partition produces a failed message,
or if one or both partitions do not produce a passed message, the test is graded "failed”.

When running the multi-partition testsit is not important which partition is sarted first. Generdly,
partition A acts as a server and partition B isaclient, so sarting partition A first isusudly bes.

45 21 March 2001 ACATS 2.5 User'sGuide

In the event atest fals due to the exception Communication_Error being raised, it is permissble
to rerun the test.

4.6.5.3 Tests for the Numerics Annex

Many of the testsfor Annex G, Numerics, must be run in strict mode. The method for sdecting
gtrict mode is implementation dependent and not specified by the ACATS. (Note that the tests
for numericd functions specified in Annex A may, but need not, be run in drict mode) The
following tesss must be run in grict mode:

CXG2003 CXG2010 CXG2016 CXG2022
CXG2004 CXG2011 CXG2017 CXG2023
CXG2006 CXG2012 CXG2018 CXG2024
CXG2007 CXG2013 CXG2019
CXG2008 CXG2014 CXG2020
CXG2009 CXG2015 CXG2021

4.6.5.4 Teststhat use Configuration Pragmas

Severd of the tests in Annex D, Red Time Processing, Annex E, Digtributed Processing, and
Annex H, Safety and Security, use configuration pragmas. The technique for gpplying a
configuration pragma to a test composed of multiple compilation units is implementation
dependent and not specified by the ACATS. Every implementation that uses any such test in a
conformity assessment must therefore take the agppropriate steps, which may include
modifications to the test code and/or post-compilation processing, to ensure that such a pragma
is correctly gpplied. The following tests require specid processing of the configuration pragma:

BA15001 CXD1005 CXD4006 LXD7005
BXC5001 CXD2001 CXD4007 LXD7006
BXH4001 CXD2002 CXD4008 LXD7007
BXH4002 CXD2003 CXD4009 LXD7008
BXH4003 CXD2004 CXD4010 LXD7009
BXH4004 CXD2005 CXD5002 LXH4001
BXH4005 CXD2006 CXD6002 LXH4002
BXH4006 CXD2007 CXD6003 L XH4003
BXH4007 CXD2008 CXDAO0O03 LXH4004
BXH4008 CXD3001 CXDBO005 L XH4005
BXH4009 CXD3002 CXH1001 L XH4006
BXH4010 CXD3003 CXH3001 LXH4007
BXH4011 CXD4001 CXH3003 L XH4008
BXH4012 CXD4003 LXD7001 LXH4009
BXH4013 CXD4004 LXD7003 LXH4010
CXD1004 CXD4005 LXD7004 LXH4011
46 1 April 2002 ACATS25User'sGuide

LXH4012 LXH4013

4.6.6 Focuson Specific Areas

The ACATS test suite is structured to dlow compiler devel opers and testers to use parts of the
suite to focus on specific compiler feature arees.

Both the legacy tests and the newer tests tend to focus on specific language features in individua
tests. The name of the test is generaly a good indicator of the primary feeture content of the
tedt, as explained in the discusson of naming conventions. Beware that legacy test names have
not changed, but the Ada Reference Manud organization has changed from [Ada83] to
[Ada95], so some legacy test names point to the wrong clause of [Adag5]. Further, note that
the generd style and gpproach of the newer tests creates user-oriented test situations by
including a variety of features and interactions. Only the primary test focus can be indicated in
the test name.

ACATS 2.5 tests are divided into core tests and Speciadized Needs Annex tests. Recall that
annexes A and B are part of the core language. All annex tests (including those for annexes A
and B) have an X' as the second character of their name; Specidized Needs Annex tests have
a letter between 'C' and 'H' (inclusve) corresponding to the annex designation, as the third
character of the test name.

4.7 Grading Test Results

Although a single te may examine multiple language issues, ACATS test results are graded
"passed”, "failed”, or "not gpplicable’ asawhole.

All customized, gpplicable tests must be processed by an implementation. Results must be
evauated againg the expected results for each class of test. Results that do not conform to
expectations conditute failures. The only exceptions alowed are discussed above in test litting
and modification; in such cases, processng the approved modified test(s) must produce the
expected behavior. Any differences from the generd discusson of expected results below for
executable or non-executable tests are included as explicit test conditionsin test prologues.

Warning or other informational messages do not affect the pass/fall satus of tests.
Expected results for executable and non-executable tests are discussed in Sections 4.7.1 -

4.7.3. Tedts that are non-gpplicable for an implementation are discussed in 4.7.4. Withdrawn
testisarediscussed in 4.7.5.

ACATS2.5User'sGuide 1 April 2002 47

4.7.1 Expected resultsfor Executable Tests

Executable tests (classes A, C, D, E) must be processed by the compiler and any post-
compilation steps (eg., binder, partitioner) without any errors. They must be loaded into an
execution target and run. Norma execution of tests results in an introductory message that
summarizes the test objective, possibly some informative comments about the test progress, a
find message giving pass / fal daus and graceful, dlent termination. They may report
"PASSED", "TENTATIVELY PASSED", "FAILED", OR "NOT APPLICABLE".

A test tha falls to compile and bind, including compiling and binding any foundation code on
which it depends is graded as "failed’, unless the test includes features that need not be
supported by dl implementations. For example, an implementation may reject the declaration of
a numeric type that it does not support. Allowable cases are clearly stated in the Applicability
Criteria of tests Annex L of [Ada95] requires implementations to document such
implementation-defined characteristics.

A test that reports "FAILED" is graded as "failed” unless the ACAL, and possibly the ACAA,
determine that the test is not gpplicable for the implementation.

A test that reports "PASSED" is graded as "passed” unless the test produces the pass message
but fails to terminate gracefully (e.g., crashes, hangs, raises an unexpected exception, produces
an earlier or later "FAILED" message). This kind of aberrant behavior may occur, for example,
in certain tasking tests, where there are multiple threads of control. A pass status message may
be produced by one thread, but another thread may asynchronoudy crash or fail to terminate

properly.

A test that reports "NOT APPLICABLE" must be run by the implementation and is graded as
"not gpplicable’ unless it produces the not-applicable message and then fals to terminate
gracefully.

A test that reports "TENTATIVELY PASSED" is graded as "passed"” if the test results satisfy
the pass/fal criteria in the tes. Normaly, verification requires manua ingpection of the test
output.

A test that fails to report, or produces only a partid report, will be graded as "failed" unless the
ACAL, and possbly the ACAA, deermine that the test is not applicable for the
implementation.

4.7.2 Expected Resultsfor Class B

Class B tests are expected to be compiled but are not subject to further processing and are not
intended to be executable. An implementation must correctly report each clearly marked error
(the notation "'-- ERROR:" occurs &t the right hand sde of the source). A multiple unit B test file

48 1 April 2002 ACATS25User'sGuide

generdly will have erors only in one compilation unit. Error messages must provide some
means of specifying the location of an error, but they are not required to be in direct proximity
with the"-- ERROR:" marking of the errors.

Some B-tests also include the notation "-- OK™" to indicate constructs that must not be identified
aserrors. Thisis especially important since some constructs were errorsin Ada83 that
arelegal in Ada9s.

Note that the error and OK markings may occur in lower or mixed case, as well as upper case.

Some B-tests exercise constructs whose correctness depends on source code that is textually
separated (e.g., a deferred constant and its full declaration). In these cases, it may be
reasonable to report an error at both locations. Such cases are marked with "-- OPTIONAL
ERROR". These lines may be flagged as errors by some, but not al, implementations. Unlessan
optiond error is marked as an error for the wrong reason, an error report (or lack of it) does
not affect the pass/fail status of the test.

A test is graded as "passed” if it reports each error in the test. The content of error messagesis
considered only to determine that they are indeed indications of errors (as opposed to warnings,
eg.) and that they refer to the expected errors. The Reference Manual does not specify the
form or content of error messages. In particular, atest with just one expected error is graded as
"pased” if thetest isrgjected at compiletime.

A test is graded as"faled” if it falsto report on each error in the test or if it marks legd code as
Erroneous.

4.7.3 Expected Resultsfor ClassL

Class L tests are expected to be rgected before execution begins. They must be submitted to
the compiler and to the linker/binder. If an executable is generated, then it must be submitted for
execution. Unless otherwise documented, the test is graded as "falled” if it begins execution,
regardless of whether any output is produced.. (Twenty-eight L tests contain documentation
indicating that they may execute. See below.)

In generdl, an L test is expected to be rgected at link/bind time. Some tests contain
"-- ERROR:" indications, an implementation that reports an error associated with one of these
linesisjudged to have passed the test (provided, of course, that the link attempt fails).

The following tests are exceptions to the generd rule that an L test must not execute:

Test LXE3002, for the Distributed Systems Anne, is atest that has two partitions, each of which may
execute. As documented in the source code, this test is graded "failed" if both partitions report
"TENTATIVELY PASSED". Other outcomes are graded as appropriate for ClassL tests.

ACATS2.5User'sGuide 1 April 2002 49

Tests LA14001..27 (twenty-six core language tests), as documented in the source code, may execute if
automatic recompilation is supported. These tests are graded as "passed” if they execute and report
"PASSED". Other outcomes are graded as appropriate for Class L tests.

4.7.4 Inapplicable Tests

Each ACATS test has a test objective that is described in the test prologue. Some objectives
address Ada language features that need not be supported by every Ada implementation (e.g.,
"check floating-point operations for digits 18"). These test programs generdly dso contain an
explicit indication of their gpplicability and the expected behavior of an implementation for which
they do not apply. Appendix D of this user's guide lists common reasons for a test to be
inapplicable, and lists the tests affected.

A test may be ingpplicable for an implementation given:

. appropriate ACATS grading criteria; or
. an ACAA ruling on a petition to accept adeviation from expected results.

Appropriate grading criteriainclude:

a. whether atest completes execution and reports"NOT APPLICABLE";

b. whether atest is rejected at compile or bind time for a reason that satisfies grading criteria stated in
the test program.

All applicable test programs must be processed and passed.

4.7.5 Withdrawn Tests

From time to time, the ACAA determines that one or more tests included in a release of the
ACATS should be withdrawn from the test suite. Tedts that are withdrawn are not processed
during a conformity assessment and are not consdered when grading an implementation.

Usualy, a test is withdrawn because an error has been discovered in it. A withdrawn test will
not be reissued as a modified test, dthough it may be revised and reissued as a new test in the
future,

Withdrawn tests are ligted in the ACATS Modification List, which is maintained by the ACAA.

50 1 April 2002 ACATS25User'sGuide

4.8 Addressing Problemsor |ssues

After dl tests have been processed and graded, any remaining problems should be addressed.
Tedt fallures mugt be identified and resolved. This section discusses issues that are not due to
implementation errors (bugs).

4.8.1 Typical Issues

Here are some typica causes of unexpected ACATS test falures (often resulting from clerica
errors):

Processing atest that iswithdrawn;
Processing atest that has been modified by the ACAA to correct atest error;

Processing a test that is not applicable to the implementation (as explained in Section
4.7.4;

Processing files (or tests, see Section 4.5.2) in anincorrect order;
Processing tests when units required in the environment are not present.

Test reault failures resulting from technical errors may include:

Incorrect valuesin ImpDef, which provide inappropriate values to tests at run-time;
Incorrect valuesin macro.dfs, which result in incorrectly customized tests;
Incorrect substitutionsin wide_character tests;

Need to modify atest (e.g., split a B-test).

Finally, occasonaly a user discovers an error in a new ACATS test. More rarely, errors are
uncovered by compiler advances in tests that are gpparently stable. In ether case, if users
believe that ates is in error, they may file a dispute with the ACAL. The dispute process is
described in the next section.

4.8.2 Deviation from Expected Results - Petition & Review

Each tegt indicates in its prologue what it expects from a conforming implementation. The result
of processing a test is acceptable if and only if the result is explicitly alowed by the grading
criteriafor the test.

A usr may chdlenge an ACATS test on the grounds of gpplicability or correctness. A
chdlenger should submit a petition againg the test program to an ACAL or to the ACAA,
following the procedure and the format presented in [Pro0l]. A petition must clearly State
whether it is a clam that the test does not goply to the implementation or tha the test is
erroneous. The petition must indicate the specific section of code that is disputed and provide a
full explanation of the reason for the disoute.

ACATS2.5User'sGuide 1 April 2002 51

ACALswill forward petitions from their customers to the ACAA for decisons. The ACAA will
evauate the petitioner's claims and decide whether

the test is applicable to the implementation (i.e., deviation isnot allowed);

the test is not applicable to the implementation (i.e., deviationis allowed);

the test should be repaired (deviation is allowed, and the modified test should be used for
determining conformity assessment results);

the test should be withdrawn (deviation is allowed and the test is not considered in
determining conformity assessment results).

A deviation is consdered to be a test falure unless a petition to alow the deviation has been
accepted by the ACAA.

4.9 Reprocessing and Regrading

After dl problems have been resolved, tests that failed can be reprocessed and regraded. This
step completes the ACAT S testing process.

52 1 April 2002 ACATS25User'sGuide

