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1. Introduction 
The Ada Conformity Assessment Test Suite (ACATS) is the official test method used to 
check conformity of an Ada implementation with the Ada programming language 
standard (ANSI/ISO/IEC 8652:1995). The ACATS User's Guide is part of the ACATS 
and is distributed with the test programs and testing support packages. It explains the 
contents and use of the test suite. 

The ACATS is an important part of the conformity assessment process described in 
ISO/IEC-18009, Ada: Conformity of a Language Processor [ISO99]. This standard 
provides a framework for testing language processors, providing a stable and 
reproducible basis for testing. The Ada Resource Association has sponsored an 
instantiation of that process since October 1998. The process is managed by the Ada 
Conformity Assessment Authority (ACAA). 

Prior to the ISO standard, the U.S. Department of Defense sponsored a similar 
conformity assessment process under the Ada Joint Program Office (AJPO). The test 
suite for that process was known as the Ada Compiler Validation Capability (ACVC). 
The AJPO developed ACVC versions based on ANSI/MIL-STD-1815A-1983, 
ISO/8652:1987 (Ada 83), which were numbered 1.x where x ranged from 1 to 11. It later 
developed ACVC versions based on ANSI/ISO/IEC 8652:1995 (Ada95), numbered 2.0, 
2.0.1, 2.1, and 2.2. 

When the ACAA took over Ada conformity assessment, it adopted the ACVC as the 
basis for its test suite. The ACAA determined to continue to use the same version 
numbering for the test suite in order to avoid confusion. The version of the ACVC 
current at the time (2.1) was initially used as ACATS 2.1. Later, the already developed 
but unreleased ACVC 2.2 was released and used as ACATS 2.2. The ACAA later 
released ACATS 2.3, ACATS 2.4, and then ACATS 2.5 to include maintenance changes 
and a few new tests. 

This version of the ACATS is version 2.6. As with ACATS 2.3, 2.4, and 2.5, this version 
was completely developed under the auspices of the ACAA. As with it predecessors, 
ACATS 2.6 contains test programs to check for conformity to new language features 
defined in [Ada95], as well as test programs to check for conformity to language features 
shared between Ada83 and Ada95. Subsequent maintenance or enhancement versions of 
the suite, if they are required, will be numbered 2.7, etc.  

The ACATS User’s Guide describes the set of ACATS tests and how they are to be used 
in preparation for conformity assessment. The formal procedures for conformity 
assessment are described in [Pro01], and the rules in that document govern all conformity 
assessments, notwithstanding anything in this document that may be interpreted 
differently. Moreover, this guide does not discuss specific requirements on processing of 
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the ACATS test suite, or submission and grading of results that an Ada Conformity 
Assessment Laboratory (ACAL) may impose. 

The User's Guide is intended to be used by compiler implementers, software developers 
who maintain a version of the ACATS as a quality control or software acceptance tool, 
and third-party testers (e.g., Ada Conformity Assessment Laboratories). 

Section 2 of the User’s Guide for ACATS 2.6 summarizes the changes between ACATS 
2.5 and ACATS 2.6. Section 3 describes the configuration of the ACATS, including a 
description of the ACATS software and delivery files. Section 4 provides step-by-step 
instructions for installing and using the test programs and test support packages, and for 
grading test results. The appendices include other information that characterizes the 
ACATS 2.6 release.  

Refer to Sections 1.1 and 4.7 for the definition of an acceptable result and the rules for 
grading ACATS 2.6 test program results. Section 4.8.2 provides instructions for 
submitting a petition against a test program if a user believes that a deviation from the 
acceptable results for a given test program is in fact conforming behavior. 

The ACATS test suite is available from any ACAL and from the Ada Information 
Clearinghouse (sponsored by the ARA). See http://www.adaic.org. 

1.1 Definition of Terms 
Acceptable result : The result of processing an ACATS test program that meets the explicit grading 

criteria for a grade of "passed" or inapplicable. 

ACATS Modification List (AML) : A list maintained by the ACAA documenting the currently 
modified and withdrawn tests. It also documents any new tests that have been or will be added 
to the test suite. The ACATS modification list is updated from time to time as challenges from 
implementers are received and processed, new tests are created, or as other technical 
information is received. 

ACVC  Implementer’s Guide (AIG) : A document describing the test objectives used to produce test 
programs for Ada83 ACVC versions (1.1-1.11). AIG section references are embedded in Ada83 
test naming conventions. 

Ada Conformity Assessment Authority (ACAA) : The part of the certification body that provides 
technical guidance for operations of the Ada certification system  

Ada Conformity Assessment Laboratory (ACAL) : The part of the certification body that carries 
out the procedures required to perform conformity assessment of an Ada implementation. 
(Formerly AVF) 

Ada implementation : An Ada compilation system, including any required run-time support software, 
together with its host  and  target computer systems. 
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Ada Joint Program Office (AJPO) : An organization within the U.S. Department of Defense that 
sponsored the development of the ACVC and formerly provided policy and guidance for an 
Ada certification system. 

Ada programming language : The language defined by reference [Ada95]. 

Ada Resource Association (ARA) : The trade association that sponsors the Ada conformity 
assessment system. 

Ada Validation Facility (AVF) : Former designation of an Ada Conformity Assessment Laboratory 
(which see). 

Ada Validation Organization (AVO) : Organization that formerly performed the functions of the 
Ada Conformity Assessment Authority (which see). 

Certification Body : The organizations (ACAA and ACALs) collectively responsible for defining and 
implementing Ada conformity assessments, including production and maintenance of the 
ACATS tests, and award of Ada Conformity Assessment Certificates. 

Certified Processors List (CPL) : A published list identifying all certified Ada implementations. The 
CPL is available on the Ada Information Clearinghouse Internet site (www.adaic.org). 

Challenge : A documented disagreement with the test objective, test code, test grading criteria, or 
result of processing an ACATS test program when the result is not PASSED or 
INAPPLICABLE according to the established grading criteria. A challenge is submitted to the 
ACAA. 

Conforming implementation : An implementation that produces an acceptable result for every 
applicable test. Any deviation constitutes a non-conformity. 

Core language :  Sections 2-13 and Annexes A, B, and J of [Ada95]. All implementations are 
required to implement the core language. The tests for core language features are required of all 
implementations. 

Coverage matrix : A document containing an analysis of every paragraph of [Ada95]. Each 
paragraph has an indication of whether is contains a testable Ada95 requirement, whether it is 
upwardly compatible from Ada83, or whether is testable in the ACATS suite (e.g. it contains an 
example). Paragraphs that contain testable requirements also indicate what ACATS test(s) 
specifically examine features described in the paragraph. 

Deviation : Failure of an Ada implementation to produce an acceptable result when processing an 
ACATS test program. 

Foundation Code : Packages used by multiple tests; foundation code is designed to be reusable. 
Generally a foundation is a package containing types, variables, and subprograms that are 
applicable and useful to a series of related tests. Foundation code is never expected to cause 
compile time errors. It may be compiled once for all tests that use it or recompiled for each test 
that uses it; it must be bound with each test that uses it. 
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Legacy Tests : Tests that were included in ACVC 1.12 that have been incorporated into later ACVC 
and ACATS versions. The vast majority of these tests check for language features that are 
upwardly compatible from Ada83 to Ada95. Some of these tests have been modified from the 
ACVC 1.12 versions to ensure that Ada95 rules are properly implemented in cases where there 
were extensions or incompatibilities from Ada83 to Ada95. 

Specialized Needs Annex : One of annexes C through H of [Ada95]. Conformity testing against one 
or more Specialized Needs Annexes is optional. There are tests that apply to each of the 
Specialized Needs Annexes. Results of processing these tests (if processed during a conformity 
assessment) are reported on the certificate and in the Validated Compilers List. 

Test Objectives Document (TOD) : A document containing the test objectives used for new ACATS 
tests that focus on Ada95-specific features. 

Validated Compilers List (VCL) : Former designation of the Certified Processors List (which see). 

Validated Implementation : Informally used to mean Conforming Implementation (see). 

Validation :  Informally used to mean conformity assessment. 

Withdrawn Test : A test found to be incorrect and not used in conformity testing. A test may be 
incorrect because it has an invalid test objective, fails to meet its test objective, or contains 
erroneous or illegal use of the Ada programming language. Withdrawn tests are not applicable 
to any implementation. Withdrawn tests are often modified and restored to subsequent ACATS 
releases. 

Witness Testing : Conformity assessment testing performed in the presence of ACAL personnel. 
Witness testing adds the assurance that the test procedures were followed and that the results 
were verified. 

1.2 References 
[Ada83] ANSI/MIL-STD-1815A-1983, ISO 8652:1987, FIPS 119  Reference Manual for 

the Ada Programming Language--superseded by ISO-8652:95)  

[Ada95] ANSI/ISO/IEC 8652:1995, FIPS 119-1 The Reference Manual for the Ada 
Programming Language, February 1995  

[ISO99] ISO/IEC 18009:1999, Information technology -- Programming languages -- Ada: 
Conformity Assessment of a Language Processor, December 1999 

[Pro01] Ada Resource Association: Operating Procedures for Ada Conformity Assessments 
Version 3.0, April 2001 

[TC1] ISO/IEC 8652:1995/Cor.1:2001  Programming Languages - Ada - Technical 
Corrigendum 1, June 1, 2001 
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1.3 ACATS Purpose 
The purpose of the ACATS is to check whether an Ada compilation system is a 
conforming implementation, i.e., whether it produces an acceptable result for every 
applicable test.  

A fundamental goal of conformity assessment (validation) is to promote Ada software 
portability by ensuring consistent processing of Ada language features as prescribed by 
[Ada95]. ACATS tests use language features in contexts and idioms expected in 
production software. While they exercise a wide range of language feature uses, they do 
not and cannot include examples of all possible feature uses and interactions. 

It is important to recognize that the ACATS tests do not guarantee compiler correctness. 
A compilation system that correctly processes the ACATS tests is not thereby deemed 
error-free, nor is it thereby deemed capable of correctly processing all software that is 
submitted to it. 

The ACATS tests do not check or report performance parameters (e.g., compile-time 
capacities or run-time speed). They do not check or report for characteristics such as the 
presence and effectiveness of compiler optimization. They do not investigate or report 
compiler or implementation choices in cases where the standard allows options.  





 

ACATS 2.6 User's Guide 14 March 2007  7 

2. Changes for ACATS 2.6 
Version 2.6 of the ACATS primarily is a maintenance version. It contains a few new tests 
to check conformity with the Technical Corrigendum for [Ada95], [TC1] 

In addition, some tests known to have problems have been modified. See Appendix A for 
lists of added, deleted and modified tests. 
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3. Configuration Information 

3.1 Introduction 
This section describes the physical and logical structure of the ACATS delivery, and it 
describes the test classes, naming conventions used, test program format, test structure, 
delivery structure, and file format.  

ACATS 2.6 is a revision of ACATS 2.5, and has the essentially the same delivery 
structure. The support tools are essentially unchanged, except for updating header 
comments and version identification.  

The test suite does not provide tools or scripts that can be used to manage complete test 
processing, since such tools are normally site specific. 

3.2 Structure 
The ACATS 2.6 test software includes test code that exercises specific Ada features, 
foundation code (used by multiple tests), support code (used to generate test results), and 
tool code (used to build tools necessary to customize ACATS tests). The suite includes 
tests for the core language and tests for the Specialized Needs Annexes. Table 1 
summarizes the number of tests and files in the ACATS suite. 

 Total Core Tests SNA Tests Foundations Docs Other 
Number of Files 4332 4000 247 45 17 23 
Number of Tests 3709 3520 189 0 0 0 

Table 1. 

The delivery structure of the test suite is described in Section 3.8. 
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3.2.1 Physical  Organization 

Table 1 summarizes the number of files that compose ACATS 2.6. In addition to files 
containing test code proper, the ACATS 2.6 test suite includes various support files:  

Others consists of 

1 List of all files 
14 Code that is referenced by tests 
4 Code and data used for preprocessing tests to insert implementation specific 

information 
4 Test routines for reporting code ("CZ" tests) 
 

Note that the number of files containing test code is larger than the number of tests in the 
ACATS suite because several tests use code included in separate files. 

A file name consists of a name plus an extension. Multiple files that contain code used by 
a single test have related names. File names are the same as that of the test contained in 
the file when possible. File names conform to MS-DOS naming conventions; therefore 
they may be shorter than the software name because of file name length restrictions (e.g., 
enumchek rather than enumcheck). File (and test) names follow conventions that indicate 
their function in the test suite; naming conventions are explained in Section3.4. The files 
are organized into distinct directories and subdirectories based on their function in the 
test suite. The directory organization is explained in Section 3.8.  

The ACATS is available to the general public from an ACAL or on the Internet. Links to 
the ACATS distribution can be found on the ACAA's ACATS page: 

http://www.ada-auth.org/acats.html 

Note that the ACATS files are available in both compressed Unix tar and DOS zipped 
formats. Section 4.2.2 provides a discussion of techniques to convert these files to a 
usable format. 
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3.2.2 Logical Organization 

Table 1 summarizes the number of tests that check the conformance of an Ada 
implementation to the core language and conformance to the Specialized Needs Annexes 
of [Ada95].  

Core tests apply to all implementations. Specialized Needs Annex tests are not required 
for any implementation. Tests for a given Specialized Needs Annex may be processed by 
implementations that claim implementation of that annex.  

In general, no test result depends on the processing or the result of any other test. 
Exceptions are noted in Section 4.5.2. No annex test depends on the implementation of 
any other annex, except possibly in cases where one annex specifically depends on 
another in Ada95 (e.g., no test for the Information Processing Annex uses features from 
any other annex, however Real Time Annex and Distributed Processing tests may depend 
on Systems Programming Annex features). [There is a single exception to this rule: see 
Section  4.6.5.2.]  Annex tests may use any core feature. 

Tests may be created from one or more compilation units. If a test consists of a single 
compilation unit (a main subprogram only), the test code will be contained in a single 
file. Tests built from more than one compilation unit may require multiple files. 
Moreover, some compilation units, called foundation code, may be used by more than 
one test. Even in these cases, the resulting tests are strictly independent: if test A and test 
B use the same foundation code, the results of processing (and running, if appropriate) A 
have no effect on the results of processing (and running, if appropriate) B. Foundation 
code is more fully explained in Section 3.2.4.  

Tests are named using conventions that provide (limited) information about the test. The 
test naming conventions are explained in Section 3.4. Each test belongs to a single test 
class that indicates whether it is or is not an executable test. Test classes are explained in 
Section 3.3. 

In addition to test code and foundation code, there is code on which many or all of the 
executable tests in the suite depend (e.g., package Report, package ImpDef, package 
TCTouch). Some of this code must be customized to each implementation. There is also 
code that must be used to build support tools used to customize the suite of tests to an 
implementation. The customization process is described in Section 4.3. 

3.2.3 Legacy Tests 

Many tests check only language features that are common to Ada83 and Ada95. The vast 
majority of these tests came unmodified from the ACVC 1.12 suite. Some tests were 
modified to check for the correct implementation of Ada95 rules in cases where language 
rules changed from Ada83.  
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3.2.4 Foundation Code 

Some tests use foundation code. Foundation code is reusable across multiple tests that are 
themselves independent of each other. It is intended to be compiled and included in an 
environment as part of the compilation process of a test. If the test is executable, the 
foundation code must be bound with all other code for the test prior to execution. 

Foundation code is always expected to compile successfully; it is never expected to be 
run by itself. Foundation code is not, in and of itself, a test, and is therefore not 
characterized by a test class (see 3.3). One may think of it as providing some utility 
definitions and routines to a number of different tests. Names of foundation units (and 
therefore names of files containing foundation code) are distinguished as described in 
Naming Convention, Section 3.4. 

3.2.5 Special Core Tests 

This section identifies tests that appear in the Core (since their requirements are 
enunciated there) but that may be graded as non-supported for implementations not 
claiming support of certain Specialized Needs Annexes. 

Annex C Requirements 

Section 13 of [Ada95] includes implementation advice paragraphs. The ACATS does not 
require implementations to conform to those paragraphs unless they claim support for 
Annex C, Systems Programming (cf. C.2(2): “The implementation shall support at least 
the functionality defined by the recommended levels of support in Section 13.”) 

Tests that check conformance to the implementation advice are listed below: 

CD10001 CD30005 CD40001 
CD20001 CD33001 CD72A01 
CD30001 CD33002 CD72A02 
CD30002 CD30004 CD90001 
CD30003   

Implementations that claim support for Annex C are required to process and pass the tests 
listed above. 

Implementations that do not claim support for the appropriate Annexes are still required 
to process these tests. Such implementations may reject the lines marked with the special 
comment  "-- ANX-C RQMT", in which case the test will be graded as "unsupported". If 
an implementation accepts such lines in one of these tests, then the test must be bound 
(linked) and executed, with a passed or not_applicable result. 
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3.2.6 Foreign Language Code 

Several tests for Annex B features (and one Section 13 test) include files containing non-
Ada code (Fortran, C, Cobol). These tests must be compiled, bound, and run by 
implementations that support foreign language interfaces to the respective non-Ada 
language. The foreign language code uses only the most basic language semantics and 
should be compilable by all Fortran, C, and Cobol compilers, respectively. In cases 
where a foreign language does not accept the code as provided, modifications are 
allowable. See Section 4.3.6. 

Files that contain foreign code are identified by a special file extension. See Section 
3.4.2. 

The tests that include Fortran code are: CXB5004 and CXB5005 

The tests that include C code are: CXB3004, CXB3006, CXB3013 and CD30005 

The test that includes Cobol code is: CXB4009 

3.3 Test Classes 
There are six different classes of ACATS tests, reflecting different testing requirements 
of language conformity testing. Each test belongs to exactly one of the six classes, and its 
membership is encoded in the test name, as explained later. The purpose and nature of 
each test category is explained below. The test classifications provide an initial indication 
of the criteria that are used to determine whether a test has been passed or failed. 

3.3.1 Class A 

Class A tests check for acceptance (compilation) of language constructs that are expected 
to compile without error.  

An implementation passes a class A test if the test compiles, binds, and executes 
reporting "PASSED". Any other behavior is a failure.  

Only legacy tests are included in this class. 

3.3.2 Class B 

Class B tests check that illegal constructs are recognized and treated as fatal errors. They 
are not expected to successfully compile, bind, or execute. Lines that contain errors are 
marked "-- ERROR:" and generally include a brief description of the illegality on the 
same or following line. (The flag includes a final “:” so that search programs can easily 
distinguish it from other occurrences of the word “error” in the test code or 
documentation.)  Some tests also mark some lines as "-- OK", indicating that the line 
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must not be flagged as an error. Lines so marked are often, but not always, constructs 
that were errors in Ada83 but are correct in Ada95. 

An implementation passes a class B test if each indicated error in the test is detected and 
reported, and no other errors are reported. The test fails if one or more of the indicated 
errors are not reported, or if an error is reported that cannot be associated with one of the 
indicated errors. If the test structure is such that a compiler cannot recover sufficiently to 
identify all errors, it may be permissible to "split" the test program into separate units for 
re-processing (see Section 4.3.6 for instructions on modifying tests). 

In some cases and for some constructs, compilers may adopt various error handling and 
reporting strategies. In cases where the test designers determined that an error might or 
might not be reported, but that an error report would be appropriate, the line is marked 
with "-- OPTIONAL ERROR:" or a similar phrase. In such cases, an implementation is 
allowed to report an error or fail to report an error without affecting the final grade of the 
test. 

3.3.3 Class C 

Class C tests check that executable constructs are implemented correctly and produce 
expected results. These tests are expected to compile, bind, execute and report 
"PASSED" or "NOT-APPLICABLE". Each class C test reports "PASSED", "NOT-
APPLICABLE", or "FAILED" based on the results of the conditions tested.  

An implementation passes a class C test if it compiles, binds, executes, and reports 
“PASSED”. It fails if it does not successfully compile or bind, if it fails to complete 
execution (hangs or crashes), if the reported result is "FAILED", or if it does not produce 
a complete output report. 

The tests CZ1101A, CZ1102A, CZ1103A, and CZ00004 are treated separately, as 
described in Section 4.4.2. 

3.3.4 Class D  

Class D tests check that implementations perform exact arithmetic on large literal 
numbers. These tests are expected to compile, bind, execute and report "PASSED". Each 
test reports "PASSED" or "FAILED" based on the conditions tested. Some 
implementations may report errors at compile time for some of them, if the literal 
numbers exceed compiler limits.  

An implementation passes a class D test if it compiles, binds, executes, and reports 
“PASSED”. It passes if the compiler issues an appropriate error message because a 
capacity limit has been exceeded. It fails if does not report “PASSED” unless a capacity 
limits is exceeded. It fails if it does not successfully compile (subject to the above caveat) 



 

ACATS 2.6 User's Guide 14 March 2007  15 

or bind, if it fails to complete execution (hangs or crashes), if the reported result is 
"FAILED", or if it does not produce an output report or only partially produces one. 

 Only legacy tests are included in this class. 

3.3.5 Class E 

Class E tests check for constructs that may require inspection to verify. They have special 
grading criteria that are stated within the test source. They are generally expected to 
compile, bind and execute successfully, but some implementations may report errors at 
compile time for some tests. The  "TENTATIVELY PASSED" message indicates special 
conditions that must be checked to determine whether the test is passed.  

An implementation passes a class E test if it reports "TENTATIVELY PASSED", and 
the special conditions noted in the test are satisfied. It also passes if there is a compile 
time error reported that satisfies the special conditions. Class E tests fail if the grading 
criteria in the test source are not satisfied, or if they fail to complete execution (hang or 
crash), if the reported result is "FAILED", or if they do not produce a complete output 
report. 

Only legacy tests are included in this class. 

3.3.6 Class L 

Class L tests check that all library unit dependencies within a program are satisfied 
before the program can be bound and executed, that circularity among units is detected, 
or that pragmas that apply to an entire partition are correctly processed. These tests are 
normally expected to compile successfully but not to bind or execute. Some 
implementations may report errors at compile time; potentially illegal constructs are 
flagged with "-- ERROR:".  Some class L tests indicate where bind errors are expected. 
Successful processing does not require that a binder match error messages with these 
indications.  

An implementation passes a class L test if does not successfully complete the bind phase. 
It passes a class L test if it detects an error and issues a compile time error message. It 
fails if the test successfully binds and/or begins execution. An L test need not report 
"FAILED" (although many do if they execute).  

As with B-tests, the test designers determined that some constructs may or may not 
generate an error report, and that either behavior would be appropriate. Such lines are 
marked with "-- OPTIONAL ERROR:" In such cases, an implementation is allowed to 
report an error or fail to report an error. If an error is reported at compile time, the binder 
need not be invoked. If no errors are reported at compile time, the binder must be 
invoked and must not successfully complete the bind phase (as indicated by the inability 
to begin execution). 
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3.3.7 Foundation Code 

Files containing foundation code are named using the regular test name conventions (see 
Section 3.4). It may appear from their names that they represent class F tests. There is no 
such test class. Foundation code is only used to build other tests, so foundation units are 
not graded. However, if a foundation unit fails to compile, then the tests that depend on it 
cannot be compiled, and therefore will be graded as failed. 

3.3.8 Specialized Needs Annex Tests 

Specialized Needs Annex tests have no separate classifications and are classified in the 
same way as all other tests. There are Class B, Class C, and Class L SNA tests. 

3.4 Naming Convention 
This section describes the naming conventions used in ACATS 2.6, specifically as they 
apply to files. All file names are of the form <name>.<type>, where <type> is a one, two, 
or three character extension. File names indicate test class, compilation order (if 
applicable), and whether the test is implementation dependent or requires customization. 
When a test is included in a single file, <name> duplicates the test name. The same is 
true of a foundation. In multiple file tests, the first 7 characters of the file <name> are 
normally the same as the name of the test, however in some cases, the structure of the test 
requires that the file name be different from the Ada unit. The application of the 
conventions to tests is straightforward. 

There are two different but similar naming conventions used in ACATS 2.6. Legacy tests 
use the naming conventions of early ACVC versions. Tests new since ACVC 1.12 use 
the new convention. The conventions are consistently distinguishable at the 7th character 
of the name: legacy names have a letter in the 7th position, whereas newer names have a 
digit.  



 

ACATS 2.6 User's Guide 14 March 2007  17 

3.4.1 Legacy Naming 

The name of a legacy test is composed of seven or eight characters. Each character 
position serves a specific purpose as described in the table below. The first column 
identifies the character position(s) starting from the left, the second column gives the 
kind of character allowed, and the third gives the corresponding meaning: 

Position 
1 Letter Test class (cf. Section 3.3) 
2 Hexadecimal AIG chapter containing the test objective  
3 Hexadecimal Section within the above AIG chapter 
4 Alphanumeric Sub-section of the above AIG section 
5-6  Decimal Number of the test objective within the above sub-section  
7 Letter Letter identifier of the sub-objective of the above objective. 
8 Alphanumeric optional - Compilation sequence identifier -- indicates the compilation 

order of multiple files that make up a single test. This position is used 
only if the test comprises multiple files. 

The convention is illustrated in Figure 1. 

compilation order

b a  3 0 0 8 b 1 . a d a

Sometimes
Used

Always
Used

class

AIG (Ada83) ref
objective number

sequence

 

Figure 1. Legacy File Name Convention 

In multiple file tests, the intended order of compilation is indicated by a numeral at 
position 8. The first file to be compiled has '0', the second has '1', and so forth.  

The chapter and section numbers of the AIG correspond to those in [Ada83]. 

Note: The use of a ninth character ('m') to indicate the file containing the main 
subprogram has been discontinued. The following table lists the files containing the main 
subprograms of the legacy multiple file tests. 

AD7001C0 
AD7001D0 
B38103C3 
B38103E0 

B63009C3 
B73004B0 
B83003B0 
B83004B0 

B83004C2 
B83004D0 
B83024F0 
B83E01E0 

B83E01F0 
B86001A1 
B95020B2 
BA1001A0 
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BA1010A0 
BA1010B0 
BA1010C0 
BA1010D0 
BA1010E0 
BA1010F0 
BA1010G0 
BA1010H0 
BA1010I0 
BA1010J0 
BA1010K0 
BA1010L0 
BA1010M0 
BA1010N0 
BA1010P0 
BA1010Q0 
BA1011B0 
BA1011C0 
BA1020A0 
BA1020B6 
BA1020C0 
BA1020F2 

BA1101B0 
BA1101C2 
BA1109A2 
BA1110A1 
BA2001F0 
BA2003B0 
BA2011A1 
BA3001A0 
BA3001B0 
BA3001C0 
BA3001E0 
BA3001F0 
BA3006A6 
BA3006B4 
C38108C1 
C38108D0 
C39006C0 
C39006F3 
C64005D0 
C83022G0 
C83024E1 
C83F01C2 

C83F01D0 
C83F03C2 
C83F03D0 
C86004B2 
C86004C2 
CA1011A6 
CA1012A4 
CA1012B4 
CA1013A6 
CA1014A0 
CA1020E3 
CA1022A6 
CA1102A2 
CA2001H3 
CA2002A0 
CA2003A0 
CA2004A0 
CA2007A0 
CA2008A0 
CA2009C0 
CA2009F0 
CA3011A4 

CA5003A6 
CA5003B5 
CA5004B1 
CC3019B2 
CC3019C2 
LA5001A7 
LA5007A1 
LA5007B1 
LA5007C1 
LA5007D1 
LA5007E1 
LA5007F1 
LA5007G1 
LA5008A1 
LA5008B1 
LA5008C1 
LA5008D1 
LA5008E1 
LA5008F1 
LA5008G1 

 

The file name extension is three characters long. There are four extensions: 

.ada A file that contains only Ada code. It does not require any pre-processing to create a 
compilable test. It will be submitted directly to the implementation for determination of test 
results. All implementations must correctly process these tests. 

.dep A file that has a test involving implementation-dependent features of the language. These 
tests may not apply to all implementations. 

. ts t   A file that has "code" that is not quite Ada; it contains "macro" symbols to be replaced by 
implementation-dependent values, and it must be customized (macro expanded) to prepare it 
for compilation (see Section 4.3.2).  Once customized, the resulting test must be processed as 
indicated by its class.  

.adt   A file that has been modified by the macro processor. It contains only Ada code and may be 
submitted to the implementation for results. All implementations must correctly process these 
tests. There are no files in the ACATS distribution with this extension; they are only 
produced as the output of the macro processor. 

Tests developed since ACVC 1.12 use different file name extensions.   

Note that legacy tests have not been renamed for ACATS 2.6. Since [Ada95] includes some 
organizational differences from [Ada83], this means that the name of a legacy test sometimes will 
not correspond to the clause of [Ada95] in which the tested feature is described. 
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3.4.2 ACATS 2.6 Naming 

The name of an Ada95 test is composed of seven or eight characters. Foundation code 
has a name composed of seven characters. The use of each character position is described 
below. The first column indicates the character position(s) starting from the left, and the 
second column indicates the kind of character allowed, and the third column gives the 
corresponding meaning: 

Position 
1 Letter Test class; foundations are marked 'F' 
2 Alphanumeric If other than an 'x', the section of [Ada95] describing the feature under 

test. An 'x' indicates that the test includes one or more features from an 
annex of [Ada95] 

3 Alpha-numeric Core clause or annex letter identifier (either core or Specialized Needs 
Annex) 

4 Hexadecimal Sub-clause (if a core test), or clause (if an annex test) 
5 Alphanumeric Foundation identifier (alphabetic, unless no foundation is required, in 

which case a '0') 
6-7 Decimal Sequence number of this test in a series of tests for the same clause; 

foundation code will have "00". 
8 Alphanumeric optional - Compilation sequence identifier -- indicates the suggested or 

required compilation order of multiple files that make up a single test (0 
is compiled first). This position is used only if the test comprises 
multiple files. 

This convention is illustrated in Figure 2. 

compilation order
Sometimes
Used

Always
Used

class
sequence

main procedure

section
or  'x'

clause
or annex

foundation

b a 3 0 0 1 3 1 . a m

clause or
subclause  

Figure 2. Naming convention in ACATS 2.6 

The file name extension is a one or two character file name extension. There are six 
extensions: 
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.a   A file that contains only Ada code (except for configuration pragmas in the case of some 
Specialized Needs Annex tests). It does not require any processing to prepare it for 
compilation (unless configuration pragmas must be handled separately). It is normally 
submitted directly to the implementation for determination of test results. 

.am  A file that contains the main subprogram for a multi-file test. Generally, this extension is used 
for only one file of a test. In rare cases (some Annex E tests), a multi-file test may have more 
than one file containing a "main" subprogram; in such cases, the correct testing procedure is 
described in the Special Requirements section of the test prologue. 

.aw  A file that has "code" that is not quite Ada; it contains one or more designated strings that 
must be  replaced by a character from the upper half of ISO8850-1 (Latin-1) (see Section 
4.3.3).  The resulting test must be compiled and run as all other class C tests. 

. f tn   A file that contains Fortran language code and must be compiled by a Fortran compiler. 
These files are used by tests that check a foreign language interface to Fortran. 

.c   A file that contains C language code and must be compiled by a C compiler. These files are 
used by tests that check a foreign language interface to C. 

.cbl  A file that contains Cobol language code and must be compiled by a Cobol compiler. These 
files are used by tests that check a foreign language interface to Cobol. 

A test that depends on foundation code has an alphabetic character in the fifth position of 
its name. The required foundation will have the same characters in the second through 
fifth positions of its name. For example, C123Axx depends on F123A00. 

3.4.3 Multiple File Tests 

When tests are contained in multiple files (i.e., compilation units are contained in 
different files), the file names are related. The first seven positions of the names of all the 
files (other than foundation files) comprised by a single test will be identical. The eighth 
position will provide a distinguishing alphanumeric which indicates the required 
compilation order. In legacy tests, the main program is not indicated (see the table in 
section 3.4.1 for files containing main subprograms). For newer tests, the extension ".am" 
indicates the file with the main program. 

All tests apply the convention of naming the main subprogram the same as the file 
(excluding the file extension) plus the letter 'm' (for legacy tests only). For example, the 
legacy test, C39006F, is contained in four files, named c39006f0.ada, c39006f1.ada, 
c39006f2.ada, and c39006f3.ada. The main sub-program of the test is contained in 
c39006f3.ada and is named "C390006F3M". The test C390006 is also contained in 
four files, named c3900060.a, c3900061.a, c3900062.a, and c3900063.am. The 
main subprogram of the test is contained in c3900063.am and is named "C3900063". 

There are a small number of Specialized Needs Annex tests for the Distributed 
Processing Annex that require two active partitions and have two main subprograms. 
These tests have two files with the .am extension to signify the location of the (multiple) 
main subprograms.  
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3.5 Test Program Format 
Each test file is composed of a test prologue, documenting the test, and the test code 
proper. All prologue lines are marked as comments. [The prologue in files containing 
non-Ada code is marked according to the comment conventions of the foreign language.] 

The prologue for all tests is based on that of legacy tests. Legacy tests are generally, but 
not entirely, consistent in their use of the prologue. The format of the prologue between 
test files and foundation files is slightly different. 

The general format of the prologue is as follows: 

<file name> - The distribution name of the file containing this prologue. 

DISCLAIMER - Use restrictions for ACATS tests; included in all tests. 

OBJECTIVE - A statement of the test objective; included in all tests. 

TEST DESCRIPTION - A short description of the design or strategy of the test or other pertinent 
information. Included in all newer tests but not generally included in legacy tests. 

SPECIAL REQUIREMENTS - optional - Included if the test has any special requirements for 
processing. Normally, this section will be found only in Specialized Needs Annex tests. For 
example, an Annex E test may check for the correct implementation of partitions; the 
requirements for test partitioning and what to use as a main subprogram in each partition would 
be documented in this section. 

TEST FILES - optional - Included if the test depends on multiple files; identifies the component files 
of a multi-file test.  

APPLICABILITY CRITERIA - optional - Specifies the conditions under which the test can be ruled 
inapplicable.  

PASS/FAIL CRITERIA - optional - Explains how to interpret compilation, binding, and/or run-time 
results for grading the test.  

MACRO SUBSTITUTIONS - optional - Identifies the macro symbol(s) in the file that must be 
replaced and provides a brief description of what the replacement(s) represent. 

CHANGE HISTORY- History of the test file. Included in all tests. 

All tests have the line immediately after the disclaimer marked "--*". The newer tests 
have the line after the last prologue line (before the first line of executable code) marked 
"--!"  No other comment lines are marked with those conventions, so the next line after 
the disclaimer and the first line of code may be found quickly with an editor search. 

Some tests are composed of multiple files (other than foundation code). Rather than 
repeating the complete prologue in each file, an alternate approach has been used. The 
file containing the main program has the complete prologue; the other, related files have 
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those sections that apply to files (TEST FILES, CHANGE HISTORY) and refer to the 
main file for the other sections. 

3.6 General Standards 
ACATS tests were developed to a general set of standards. To promote a variety of code 
styles and usage idioms in the tests, standards were not necessarily rigorously enforced 
but were used as guidelines for test writers. A maximum line length of 79 characters was 
used to enhance electronic distribution of tests (except when specific testing requirements 
dictated otherwise, usually in .dep and .tst files).  Tests tend to be about 120 executable 
lines long, though many tests deviate from this norm (either longer or shorter) to achieve 
a design that focuses on the objective and a readable, maintainable test. Sometimes 
complex objectives have been divided into sub-objectives to achieve complete coverage 
in comprehensible, maintainable tests. Some tests check multiple sub-objectives; in other 
cases, sub-objectives are checked in separate tests.  

Legacy tests use only the basic 55-character set  (26 capital letters, 10 digits, and 19 
punctuation marks). Unless there is a specific test requirement, numeric values are in the 
range (-2048..2047), which can be represented in 12 bits. Numeric values are generally in 
the range (-128..127). Tests new to ACATS 2.x use both upper and lower case letters and 
may use larger numeric values (but within the range (-65536..65535) except in rare 
cases). 

Legacy tests tend to use as few Ada features as necessary to write a self-checking 
executable test that can be read and maintained. Newer tests tend to exhibit a usage-
oriented style, employing a rich assortment and interaction of features and exemplifying 
the kind of code styles and idioms that compilers may encounter in practice.  

In the newer tests, Ada reserved words are entirely in lower case. Identifiers normally 
have their initial letter capitalized. Every attempt has been made to choose meaningful 
identifiers. In B class tests, identifier names often provide a clue to the specific case or 
situation under test. In C class tests, identifiers are normally chosen to help document the 
test design or the intent of the code.  

The newer executable tests generally provide some visual separation of those test 
elements that focus on conformance issues from those that govern the flow of a test. For 
example, there is frequently a need to establish preconditions for a test and examine post-
conditions after a section of test code has executed. To distinguish between constructs 
(types, objects, etc.) that are part of the test code and those that are artifacts of the testing 
process (e.g., pre-, post-conditions), the latter have "TC_" prefixed to the identifier name. 
This prefix is shorthand for "Test_Control". 



 

ACATS 2.6 User's Guide 14 March 2007  23 

3.7 Test Structure 
Executable tests (class A, C, D, and E) generally use the following format:     

 with Report; 
 procedure Testname is 
  <declarations> 
 begin 
  Report.Test ("Testname", "Description ..."); 
  ... 
  <test situation yielding result> 
  if Post_Condition /= Correct_Value then 
   Report.Failed ("Reason"); 
  end if; 
  ... 
  Report.Result; 
 end Testname; 
 

The initial call to Report.Test prints the test objective using Text_IO output. After each 
section of test code, there is normally a check of post conditions. The if statement in this 
skeleton is such a check; unexpected results produce a call to Report.Failed. The 
sequence of test code / check of results may be repeated several times in a single test. 
Finally, there is a call to Report.Result that will print the test result to Text_IO output. 
Often, but not always, this structure in enclosed in a declare block.  

One or more calls to Report.Failed will report a result of "FAILED" and a brief 
suggestion of the likely reason for that result. 

More complex tests may include calls to Report.Failed in the code other than in the main 
program, and therefore exhibit the following format for the main procedure: 

 with Report; 
 procedure Testname is 
  <declarations> 
 begin 
  Report.Test ("Testname", "Description ..."); 
  ... 
  Subtest_Call; 
  ... 
  Report.Result; 
 end Testname; 

Fail conditions are detected in subprograms (or tasks) and Report.Failed is called within 
them. 

Occasionally, as a test is running, it will determine that it is not applicable. In such a 
case, it will call Report.Not_Applicable that will report a result of 
"NOT_APPLICABLE" (unless there is also a call to Report.Failed). 

Often, a test calls one of the functions Report.Ident_Int or Report.Ident_Bool to obtain a 
value that could be provided as a literal. These functions are intended to prevent 
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optimizers from eliminating certain sections of test code. The ACATS suite has no 
intention of trying to discourage the application of optimizer technology, however 
satisfactory testing of language features often requires the presence and execution of 
specific lines of test code. Report.Ident_Int and Report.Ident_Bool are structured so that 
they can be modified when needed to defeat optimizer advances. 

Class B tests may be structured differently. Since they are not executable, they normally 
do not include calls to Report.Test or Report.Result (since those lines of code would have 
no output effect). Instead, intentional errors are coded that invoke specific legality rules. 
The source code includes comments that document expected compiler results. Legal 
constructs may also be included in B class tests. Constructs that are allowed by the 
legality rules are marked "-- OK"; constructs that are disallowed are marked "-- 
ERROR:". There is usually a brief indication of the nature of an intentional error on the 
same line or the line following a comment. The indications of expected results are 
approximately right justified to the code file margin, about column 79, for quick visual 
identification. 

Class L tests are multifile tests with illegalities that should be detected at bind time. They 
are generally structured like class C tests, often with calls to Report.Test and 
Report.Result, but they are not expected to execute. 

3.8 Delivery Directory Structure 
The delivery of ACATS tests is structured into a directory tree that reflects the 
organization of the test suite and support code. See Fig. 3. 

The top-level directory contains the support subdirectory, the docs subdirectory, and a 
subdirectory for each major grouping of tests. The support subdirectory contains all 
support packages (Report, ImpDef, TCTouch) and the source code for all test processing 
tools (Macro expander, Wide Character processor). Each of the other subdirectories 
contains all tests that begin with the indicated prefix. For example, all of the B2* tests are 
in the b2 subdirectory; all of the CXH* tests are in the cxh subdirectory. Note that all of 
the A* tests are in the a directory, all of the D* tests are included in the d subdirectory, 
and all of the E* tests are included in the e subdirectory. The l directory contains the L 
tests for the core; other L tests are in directories named with three letters, indicating the 
class (l) and the Specialized Needs Annex to which the tests apply. 

Subdirectories that would be empty are not stubbed. 

Figure 3 sketches this scheme, but does not show complete detail. A list of all 
subdirectories is included in Section 4.2.2. 
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ACATS 25

  a    b2 … be     bxa .. bxh     c2 ... ce     cxa … cxh     cz    d    e    l   lxd .. lxh    docs    support

note: subdirectory names and connecting line links
are not a complete list of subdirectories  

Figure 3. Delivery Directory Structure 

3.9 File Format 
To conserve space, all files in the delivered ACATS 2.6 (including test files, foundation 
files, and support files) have been compressed. Decompressed files (see Section 4.2.2) 
use only ASCII characters. Other than the documentation files, no formatting control 
characters, rulers or other information intended for word processors or editors is included 
in the files. (The documentation files are all provided as ASCII text files, but a version 
formatted for Microsoft Word 97 is also provided for greater readability). 

Files with the .zip extension have been compressed using a DOS zip utility; files with the 
.Z extension have been first put in Unix tar format and then compressed with Unix 
compress. 
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1.  Install Software

4.  Establish Command Scripts

3.  Process Support Files

Define compiler options
Omit withdrawn tests
Account for order dependencies
Compile class F files

Compile class B tests
Compile and bind class
  L tests
Compile, bind, execute
  class A,C,D,E tests

continue

2.  Tailor Software

2.1 Modify Package ImpDef

if required

2.2 Modify tests as needed
   process .tst and .aw files

2.2 b Define function declarations
    modify FCNDECL package specification
     create FCNDECL package body
    replace macro substitutions with function calls

2.3 Inspect reporting mechanism
   modify package Report if needed

3.2 Verify reporting mechanism
and file I/O implementation
   process CZ tests
   verify results

3.1 Compile:
   REPSPEC   SPPRT13
   REPBODY   CHECKFIL
   IMPDEF     LENCHECK
   FCNDECL   TCTOUCH
                     ENUMCHEK

continue

6. Grade Test Results

7. Address Problems or Issues

Withdrawn test processed?
Test applicability?
Incorrect processing order?
Program library corrupted?

Incorrect parameterization?
B-test split required?
Test dispute?

if required

Testing Complete

8. Reprocess and/or
Regrade Problem Tests

5. Process ACATS Tests

 

Figure 4 (Cont.)  Using the ACATS 
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4. Using The ACATS 

4.1 Introduction 
There are eight major steps involved in using the ACATS test suite; two of them are 
sometimes not required. The steps are: installing the software, tailoring the software, 
processing the support files, establishing command scripts, processing the ACATS tests, 
grading the test results, addressing problems (if necessary), and reprocessing problem 
tests (if necessary). The first six of these tasks must be completed successfully to 
accomplish a test run. The first four normally need be completed only once for each 
ACATS release. Each step is explained in the following sections. The flow from one to 
the next is illustrated in figure 4. 

4.2 Installation of the ACATS Test Suite 
 The ACATS test suite must be unloaded from the delivery medium or downloaded from 
a delivery site before it can be unpacked, customized for an implementation, run, and 
graded. 

4.2.1 Contents of the ACATS Delivery 

The delivery consists of 8 archives (sets of compressed files) or 8 compressed tar files. 
Each archive or compressed tar file contains compressed versions of ACATS software 
(test, foundation, and/or support code) structured into a directory tree. Files must be 
extracted from the archives. Each archive contains a readmex.txt file (where 'x' is a digit 
representing the number of the archive), which contains decompression suggestions and 
an overview of the contents of the archive or tar file. These files are not considered part 
of the ACATS; they exist so that someone finding one of the archive files can identify 
what it is. The remainder of the archive contents is described later in this section. 

Usually, some test errors will be noted in the test suite. If possible, the ACAA will 
correct the errors and issue a corrected test. If a correction is not possible, the test will be 
withdrawn. Withdrawn tests are not used in conformity assessments. For a period after 
the issuance of a corrected test, either the original or the corrected test can be used for 
conformity assessment. See the ACAA's procedures [Pro01] for details.  

The ACAA also will issue new tests periodically. As with modified tests, new tests must 
be available for a period of time before they are required in conformity assessments. 

These changes are documented in the ACATS Modification List (AML). This list 
includes a list of all new tests, all modified tests, and all withdrawn tests, and an 
indication as to when each will be (or is) required for conformity assessments. Each 
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version of the modification list is given a suffix letter. An archive and tar file containing 
the new and/or modified tests is available. The files are named MOD_2_6x, where 'x' 
represents the suffix letter for the AML version. 

These files can be found on the ACAA's web site: 
www.ada-auth.org 
 

The AML is also distributed by e-mail. To receive these lists, join the ACAA mailing list. 
To do so, simply send a message to 

listserv@ada-auth.org 

with a body of 
Join Acaa 

4.2.2 Guide to Decompressing Files 

The ACATS files are provided in two forms: compressed in zip format and compressed 
in Unix compress format. Zipped files are included in 8 zip archives (files) with the file 
extension .zip. Eight Unix compressed files, with extension .Z, contain Unix tar files. 
This section provides generic instructions for uncompressing them. These instructions are 
not the only ways to uncompress the files; sophisticated users may wish to use their own 
procedures. 

If the instructions below are used, the following subdirectories will have been created and 
populated with test files after all decompression: 

./acats2_6/a 

./acats2_6/b2 

./acats2_6/b3 

./acats2_6/b4 

./acats2_6/b5 

./acats2_6/b6 

./acats2_6/b7 

./acats2_6/b8 

./acats2_6/b9 

./acats2_6/ba 

./acats2_6/bb 

./acats2_6/bc 

./acats2_6/bd 

./acats2_6/be 

./acats2_6/bxa 

./acats2_6/bxb 

./acats2_6/c2 

./acats2_6/c3 

./acats2_6/c4 

./acats2_6/c5 

./acats2_6/c6 

./acats2_6/c7 

./acats2_6/c8 

./acats2_6/c9 

./acats2_6/ca 

./acats2_6/cb 

./acats2_6/cc 

./acats2_6/cd 

./acats2_6/ce 

./acats2_6/cz 

./acats2_6/d 

./acats2_6/e 

./acats2_6/l 

./acats2_6/cxa 

./acats2_6/cxb 

./acats2_6/bxc 

./acats2_6/bxd 

./acats2_6/bxe 

./acats2_6/bxf 

./acats2_6/bxg 

./acats2_6/bxh 

./acats2_6/cxc 

./acats2_6/cxd 

./acats2_6/cxe 

./acats2_6/cxf 

./acats2_6/cxg 

./acats2_6/cxh 

./acats2_6/lxd 

./acats2_6/lxe 

./acats2_6/lxh 

./acats2_6/docs 

./acats2_6/support 
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Note that the names are given here in all lowercase; some systems may create lowercase 
names. The path separator, shown here as '/', may also differ. 

4.2.2.1 Decompressing Zipped Files 

All ACATS files have been compressed (zipped) into compressed archives (zip-files) that 
have the MS-DOS file extension ".zip". A DOS utility was used to compress them. They 
must be decompressed before they can be further processed. A decompression utility is 
available from the source of the ACATS distribution. All ACATS 2.6 files may be 
decompressed using the following steps. Approximately 25 MB of free space on a DOS 
machine hard drive will be required to accomplish the decompression using this 
technique. 

Create a directory on the hard disk to contain ACATS. In these examples, we assume the 
name is "acats2_6", but any name can be used. Copy each archive (file with .zip 
extension) to the hard disk in the new directory. Decompress it insuring that directories 
are used. For the "unzip" program, this is the default setting. For the "pkunzip" program, 
this is the -d option. For the "winzip" program, insure that "Use Directory Names" is 
checked. Also, insure that the files are decompressed into the proper directory. For 
command line decompressors, this means insuring that the current subdirectory is 
acats2_5. For "winzip", this simply means selecting acats2_5 as the extract path. 

For example, using unzip, and assuming that the archive name is ACATS2.zip, type 
cd acats2_6 

to set the proper directory, and 
unzip ACATS2 

to extract the files. 

The files were compressed on a Windows system, where <CR><LF> is used as a line 
terminator. Decompressors for other systems using other line terminators should be able 
convert the line terminators. The ACAA has a short Ada program which converts a file 
from Windows to Unix format; please send the ACAA mail at agent@ada-auth.org to 
request it if needed. 

After all files have been extracted from the archive, delete the archive file from the hard 
disk if you wish to conserve space. 

As it decompresses files, unzip will restore the directory structure of the files, creating all 
needed subdirectories. 

Some users may prefer to work with ACATS files in an alternate directory structure or 
none at all. If the unzip utility is invoked with the "-j" option, all files in the archive will 
be decompressed and placed in the local working directory. In other words, none of the 
above subdirectories will be created. Since there are too many ACATS files to fit into a 
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root DOS directory, if you wish to put all files in a single directory, you must first create 
a subdirectory (e.g., mkdir \ACATS) and unzip all archives there. 

4.2.2.2 Decompressing Unix Compress Files 

All ACATS files have been included in 8 Unix tar format files and then compressed 
using the Unix compress utility. To create a set of ACATS files, first copy the 
compressed files acats26?.tar.Z from the distribution source to a hard drive. 
Uncompress the file with the Unix command 

uncompress acats26?.tar.Z 

(note that particular Unix implementations may have different formats or require specific 
qualifiers.)  After the ACATS file has been uncompressed, it must be untarred. Move to 
the directory where you want the ACATS2_6 directory to be created and then untar each 
of the ACATS files 

tar -xvf <path>/acats26?.tar 

where <path> is the location of the uncompressed tar file. 

Please note that these are generic instructions and may need to be customized or modified 
for specific systems. 

4.2.3 Files With Non-Graphic Characters 

Four ACATS test files contain non-graphic (control) characters that may be lost or 
corrupted in the file transfer and decompression process. The user must ensure that the 
proper characters are restored as necessary. The following paragraphs describe the four 
tests. 
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4.2.3.1 A22006C 

This test checks that format effectors can appear at the beginning of a compilation. At the 
beginning of the file, the first line is empty (indicated by the system's end-of-line marker, 
which may be a sequence of one or more characters or may be indicated by some other 
means). The second line contains 20 characters: 6 control characters followed by the 
comment delimiter, a space, and the file name (A22006C.ADA). The control characters 
are: 

 Common Name Ada Name ASCII Value  
 Decimal Hex 

Carriage return ASCII.CR 13 0D 
Carriage return  ASCII.CR 13 0D 
Vertical tab ASCII.VT 11 0B 
Line feed ASCII.LF 10 0A 
Line feed ASCII.LF 10 0A 
Form feed ASCII.FF 12 0C 

4.2.3.2 B25002A 

This test checks that control characters (other than format effectors) are not permitted in 
character literals. The expected characters are documented in source code comments, 
using the customary 2- or 3-letter mnemonics. The 28 characters are used in their ASCII 
order, and have ASCII values 0 through 8, 14 through 31, and 127. 

4.2.3.3 B25002B 

This test checks that the five format effector characters cannot be used in character 
literals. There are two groups of code containing the illegal characters; in each group, the 
characters appear in the order given below: 

 Common Name Ada Name ASCII Value  
 Decimal Hex 

Horizontal tab ASCII.HT 9 09 
Vertical tab ASCII.VT 11 0B 
Carriage return  ASCII.CR 13 0D 
Line feed ASCII.LF 10 0A 
Form feed ASCII.FF 12 0C 

4.2.3.4 B26005A 

This test checks the illegality of using control characters in string literals. Each string 
literal (ASCII codes 0 through 31 and 127) is used once, and the uses appear in ASCII 
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order. Each use is also documented in a source code comment, which identifies the 
character by its common 2- or 3-character mnemonic. 

4.3 Tailoring the ACATS Test Suite 
There are some files in the delivery that require modification before ACATS 2.6 is ready 
for processing by an Ada implementation. Package ImpDef (impdef.a) must be edited to 
include values suitable for proper testing of an implementation if the defaults are not 
acceptable. ImpDef is a package that is new to the 2.X suite, and all users will have to do 
this modification. The macros.dfs file must similarly be edited to include values suitable 
for testing. This file is slightly different from previous ACATS suites, so all users will 
have to modify it, but most changes can be retained from previous versions. All .tst files 
(including package Spprt13 (spprt13s.tst)) must have their macro symbols replaced by 
implementation specific values. A body for FcnDecl (fcndecl.ada) must be provided if 
necessary. Finally, Package Report (repbody.ada) must be modified if necessary; 
previous modifications can generally be carried forward. The required customization is 
described in the following sections.  

4.3.1 ImpDef Customization 

All implementations must customize impdef.a for ACATS 2.6 unless they wish to rely on the 
defaults provided. ImpDef must be part of the environment whenever a test that depends on it is 
processed. Note that in ACATS 2.6, ImpDef uses child libraries for the Specialized Needs 
Annexes. The only ImpDef children that need be modified are those associated with the SNAs 
that the implementer intends to test during a conformity assessment. 

ACATS tests use the entities in ImpDef to control test execution. Much of the 
information in ImpDef relates to the timing of running code; for example, the minimum 
time required to allow a task switch may be used by a test as a parameter to a delay 
statement. The time to use is obtained as an ImpDef constant. 

impdef.a was added as a new feature to ACATS 2.0 suite. It is related to macro.dfs in that 
it must be customized with values specific to an implementation and ACATS tests will 
rely on these values. ImpDef  is different in the following respects: 

• Defaults are provided. Some implementations may be able to rely entirely on the default values 
and subprograms, so no customization would be necessary. 

• Some implementations may choose to provide bodies for one procedure and/or one function. 
Bodies so provided must satisfy requirements stated in ImpDef. 

• It is not used for macro expansion of tests. Instead, ImpDef must be available at compile time 
(i.e., included in the environment) for tests that rely upon it. 
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There are child packages of ImpDef for each of the Specialized Needs Annexes. An 
implementation that uses one or more of the Specialized Needs Annexes in its conformity 
assessment must customize the associated ImpDef child packages (or rely on their 
defaults) and must set the appropriate Booleans in impdef.a. Specific instructions for 
the values required by ImpDef and its children are included in impdef.a, impdefc.a, 
impdefd.a, impdefe.a, impdefg.a, and impdefh.a. (Note that impdefc, for example, 
refers to Annex C.)  A copy of ImpDef is included in Appendix B. 

4.3.2 Macro Defs Customization 

There was no change to the macro.dfs file from ACATS 2.5 to ACATS 2.6. A version of 
macro.dfs that was tailored for ACATS 2.5 should be valid for ACATS 2.6 unless some 
implementation characteristics have changed. 

Tests in files with the extension ".tst" contain symbols that represent implementation 
dependent values. The symbols are identifiers with a initial dollar sign ('$'). Each symbol 
must be replaced with an appropriate textual value to make the tests compilable. 

 The Macrosub program distributed with the ACATS can automatically perform the 
required substitutions. This program reads the replacement values for the symbols from 
the file macro.dfs and edits all the ".tst" tests in the suite to make the needed changes. It 
writes the resulting, compilable programs into files with the same name as the original 
but with the extension .adt. A sample macro.dfs is included with the ACATS, and is 
included in Appendix D; it contains descriptions of all the symbols used in the test suite. 

Substitutions using the Macrosub program may be made as follows: 

1. Edit the file macro.dfs using values appropriate for the implementation. Symbols that use the 
value of MAX_IN_LEN are calculated automatically and need not be entered. 

2.  Create a file called tsttests.dat that includes all of the .tst test file names, and their directory 
locations if necessary. A version of this file (without directory information) is supplied. 

3. Compile and bind MacroSub. 

4. Run MacroSub. 

The program will replace all symbols in the .tst files with values from macro.dfs. Test 
files with the original test name but the extension .adt will contain the processable tests. 
The original .tst files will not be modified. 
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4.3.3 Processing for Wide_Character Tests 

There are two tests in ACATS 2.6 that require preprocessing. They must be processed with the 
Wide Character tool; the macro expander tool will not work with them. Information for these tests 
is not included in macro.dfs.  

There are two tests in ACATS 2.6 that check an implementation's ability to process 
characters drawn from the full set of graphic symbols of ISO 10646 BMP (See [Ada95] 
2.1). Since such characters cannot be included in the distribution media in a way that can 
reliably be read by an arbitrary implementation, they contain character sequences that 
must be replaced by the intended character. A special tool, the WideChr program, which 
will automatically perform the required substitutions, has been included with this 
distribution. 

The affected tests are contained in files with the extension .aw. Each such test contains a 
six or eight character sequence of the form  

"[ab]" 

or 

"[abcd]" 

Note that double quotes make up part of the special sequence (acting as part of the escape 
sequence). The processor will replace the string with a character that is designated by 
16#abcd#, where the alphanumeric characters ‘a’, ‘b’, ‘c’, ‘d’, are hexadecimal digits. 
Note that the strings to be replaced do not start with ‘$’, and the replacement is synthetic, 
not substitution. Therefore, the macro expander tool will not work with these tests. 

The WideChr tool takes the designated tests as input. The names of the required tests are 
included in the WideChr tool code as constants. It reads path names for the tests from 
ImpDef. The tool reads the tests, synthesizes the necessary replacements, and writes the 
resulting, compilable programs into files with the same name as the original but with the 
extension .a. 

Substitutions using the WideChr program may be made as follows: 

1.  Edit the file impdef.a  to indicate the path where the tests are located. This value will be 
concatenated with the test name to form the complete name of a file.  

2.  Compile and bind WideChr. 
3.  Run WideChr. 

The program will replace all special sequences in the .aw files with synthesized 
characters. Test files with the original test name but the extension .a, in the same path 
location as the original .aw files, will contain the processable tests. The original .aw files 
will not be modified. 
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4.3.4 Package SPPRT13 and Function FcnDecl 

Package SPPRT13 declares six constants of type System.Address that are primarily used 
by tests of Section 13 features. It is in the file spprt13s.tst. As distributed, the package 
uses macro symbols that must be replaced. In most cases, the substitution can be 
accomplished by the macro substitution described in the preceding section. If appropriate 
literals, constants, or predefined function calls can be used to initialize these constants, 
they should be supplied in macro.dfs. Otherwise, the package FCNDECL must be 
modified. 

The version of SPPRT13 distributed with ACATS 2.6 is slightly different from the 
version distributed with ACVC 1.11. A body is not required for this package (and would, 
therefore, be illegal in Ada95).  

All implementations should verify that package SPPRT13 can be properly customized using the 
macro substitution technique. Note that in Ada95, a body for SPPRT13 is illegal. 

The specification for package FCNDECL is in the file fcndecl.ada. SPPRT13 depends on 
FCNDECL (in a context clause that both "with"s it and "use"s it). As supplied with the 
ACATS, FCNDECL is an empty package specification. If appropriate literals, constants, 
or predefined function calls cannot be used to customize the constants declared in 
SPPRT13, the implementer must declare appropriate functions in the specification of 
FCNDECL and provide bodies for them in a package body or with a pragma Import. 

Modifications to FCNDECL must receive advance approval from the ACAL (and, if 
necessary, the ACAA) before use in a conformity assessment. 

4.3.5 Modification of Package REPORT 

All executable tests use the Report support package. It contains routines to automate test 
result reporting as well as routines designed to prevent optimizers from removing key 
sections of test code. The specification of package Report is in the file repspec.ada; the 
body is in repbody.ada. 

Under some conditions, the body of package Report may need to be modified. For 
example, the target system for a cross-compiler may require a simpler I/O package than 
the standard package Text_IO. In such a case, it may be necessary to replace the context 
clause and the I/O procedure names in the body of Report.  

Modifications to Report must receive advance approval from the ACAL (and, if 
necessary, the ACAA) before use in a conformity assessment. 
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4.3.6 Allowed Test Modifications 

Class B tests have one or more errors that implementations must identify. These tests are 
structured such that, normally, implementations can report all included errors. 
Occasionally, an implementation will fail to find all errors in a B-test because it 
encounters a limit (e.g., error cascading, resulting in too many error reports) or is unable 
to recover from an error. In such cases, a user may split a single B-test into two or more 
tests. The resulting tests must contain all of the errors included in the original test, and 
they must adhere as closely as possible to the style and content of the original test. Very 
often, the only modification needed is to comment out earlier errors so that later errors 
can be identified. In some cases, code insertion will be required. An implementation 
must be able to demonstrate that it can detect and report all intended B-test errors. 

Splits may also be required in executable tests, if, for example, an implementation 
capacity limitations is encountered (e.g., a number of generic instantiations too large for 
the implementation). In very exceptional cases, tests may be modified by the addition of 
a length clause (to alter the default size of a collection), or by the addition of an 
elaboration Pragma (to force an elaboration order). 

Tests that use configuration pragmas (see 4.6.5.4) may require modification since the 
method of processing configuration pragmas is implementation dependent. 

Some tests include foreign language code (Fortran, C, or Cobol). While the features used 
should be acceptable to all Fortran, C, and Cobol implementations, respectively, some 
implementations may require modification to the non-Ada code. Modifications must, of 
course, preserve the input-output semantics of the (foreign language) subprogram; 
otherwise, the ACATS test will report a failure. 

All splits and modifications must be approved in advance by the ACAL (and, if 
necessary, the ACAA) before they are used in a conformity assessment. It is the 
responsibility of the user to propose a B-test split that satisfies the intention of the 
original test. Modified tests should be named by appending an alphanumeric character to 
the name of the original test. When possible, line numbers of the original test should be 
preserved in the modification.  

All tests must be submitted to the compiler as distributed (and customized, if required). If 
a test is executable (class A, C, D, E) and compiles successfully, then it must be run. 
Modified tests or split tests may be processed next. Only the results of the modified tests 
will be graded.  

If the ACAA has issued an ACATS Modification List (see Section 4.2.1), then the 
required modifications must be made. The permitted modifications may be made if 
desired (or if necessary for the particular implementation). 
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4.4 Processing the Support Files 
After all the files identified in Section 4.3 have been customized as needed and required, 
the support files can be processed and the reporting mechanism can be verified. 

4.4.1 Support Files 

The following files are necessary to many of the ACATS tests. Implementations that 
maintain program libraries may wish to compile them into the program library used for 
conformity assessment: 

repspec.ada repbody.ada 
impdef .a  impdefc.a  (If testing Annex C) 
fcndecl .ada impdefd.a  (If testing Annex D) 
checkf i l .ada impdefe .a  (If testing Annex E) 
lencheck.ada impdefg.a  (If testing Annex G) 
enumchek.ada impdefh.a  (If testing Annex H) 
sppr t13s .adt  
     (after macro substitution) 
tc touch.ada 

(Depending on local requirements and strategy, it may also be convenient to compile all 
foundation code into the program library as well.) 

4.4.2 "CZ" Acceptance Tests 

Four tests having names beginning “CZ” are part of the ACATS suite. Unlike other tests 
in the suite, they do not focus on Ada language features. Instead, they are intended 
primarily to verify that software needed for the correct execution of the test suite works 
as expected and required. They check, for example, to see that package Report and 
package TCTouch work correctly. 

All CZ tests must execute correctly and exhibit the prescribed behavior for a successful 
conformity assessment. CZ tests must be processed and run as the first step of a 
conformity assessment to ensure correct operation of the support software. 

The acceptance test CZ1101A tests the correct operation of package Report's reporting 
facilities, including checks that Not_Applicable and Failed calls are reported properly, 
and that premature calls cause failure. Therefore, CZ1101A will print some failure 
messages when it is executed. The presence of these messages does not necessarily mean 
the test has failed. A listing of the expected output for CZ1101A is included in Appendix 
C (times and dates in the actual output will differ). 

The acceptance test CZ1102A tests the correct operation of the dynamic value routines in 
Report. This test should report "PASSED"; any other result constitutes a test failure. 
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The acceptance test CZ1103A ensures the correct operation of procedure Checkfile. 
(Some of the executable file I/O tests use a file checking procedure named Checkfile that 
determines an implementation's text file characteristics. The source code for this 
procedure is in the file checkfil.ada.)  CZ1103A checks whether errors in text files are 
properly detected, therefore, CZ1103A will print some failure messages when it is 
executed. The presence of these messages does not necessarily mean the test has failed. 
A listing of the expected output for CZ1103A is included in Appendix C (times and dates 
in the actual output will differ). 

The acceptance test CZ00004 produces output that verifies the intent of the conformity 
assessment. It relies on ImpDef having been correctly updated for the conformity 
assessment and produces output identifying the annexes (if any) that will be included as 
part of the conformity assessment. This test also checks for the proper operation of the 
TCTouch package, includes checks that assertion failures are reported properly, therefore 
CZ00004 will print some failure messages when it is executed. The presence of these 
messages does not necessarily mean the test has failed. A listing of the expected output 
for CZ00004 is included in Appendix C; since this output includes values from the 
customization impdef, non-failure lines may vary from those in the expected output. 
However, the number of lines and their relative positions may not change. 

4.5 Establishing Command Scripts 
Users will often find it convenient to run large numbers of ACATS tests with command 
scripts. This section discusses some of the issues to be considered in developing a script. 

4.5.1 Command Scripts 

All compiler options and switches that are appropriate and necessary to run the ACATS 
tests must be identified and included in commands that invoke the compiler. The same is 
true for the binder or any other post-compilation tools. Any implementation dependent 
processing of partitions, configuration pragmas, and strict mode processing must be part 
of the scripts for running tests that rely on these features. 

A script should compile (only) all class B tests. It should compile and bind all class L 
tests; if link errors are not explicitly given, the script should attempt to execute the L 
tests. It should compile all class F files. It should compile, bind, and execute all class A, 
C, D, and E tests. 

4.5.2 Dependencies 

A command script must take account of all required dependencies. As noted earlier, some 
tests are composed of multiple test files. Also, some tests include foundation code, which 
may be used by other tests. If a foundation is not already in the environment, it must be 
compiled as part of building the test. All files that are used in a test must be compiled in 
the proper order, as indicated by the file name. For implementations that require the 
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extraction individual compilation units from test files before submission to the compiler, 
the individual units must be submitted to the compiler in the same order in which they 
appear in the file. 

4.6 Processing ACATS Tests 
After the ACATS tests and support code has been installed and all required modifications 
and preliminary processing have been completed, the suite can be processed by an 
implementation. This section describes the tests required for conformity assessment, 
required partitioning, how tests may be bundled for efficiency, and certain processing 
that may be streamlined. It also describes how the suite has been organized to allow a 
user to focus on specific development needs. 

4.6.1 Required Tests 

An implementation may be tested against the core language only or the core language 
plus one or more Specialized Needs Annexes. All core tests (except as noted in 4.6.4) 
must be processed with acceptable results for conformity assessment of the core 
language. All legacy tests, as well as all newer tests for clauses 2-13 and annexes A and 
B are core tests. Conformity assessment including one or more Specialized Needs 
Annexes requires that all tests for the annex(es) in question be correctly processed in 
addition to all core tests 

Tests that are not applicable to an implementation (e.g., because of size limitations) and 
tests that report "NOT APPLICABLE" when run by an implementation must nevertheless 
be processed and demonstrate appropriate results. 

Tests that are withdrawn on the current ACATS Modification List as maintained by the 
ACAA need not be processed. 

4.6.2 Test Partitions 

Unless otherwise directed by the Special Requirements section of a test, all tests are to be 
configured and run in a single partition. The method of specifying such a partition is 
implementation dependent and not determined by the ACATS. The only tests that must 
be run in multiple partitions are those which test Annex E, Distributed Systems. 

4.6.3 Bundling Test Programs 

In some situations, the usual test processing sequence may require an unacceptable 
amount of time. For example, running tests on an embedded target may impose 
significant overhead time to download individual tests. In these cases, executable tests 
may be bundled into aggregates of multiple tests. A set of bundled tests will have a driver 
that calls each test in turn; ACATS tests will then be called procedures rather than main 
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procedures. No source changes in the tests are allowed when bundling; that is, the only 
allowed change is the method of calling the test. 

All bundles must be approved by the ACAL (and, if necessary, the ACAA) to qualify for 
a conformity assessment. It is the responsibility of the user to identify the tests to be 
bundled and to write a driver for them. 

4.6.4 Processing That May be Omitted 

A user may streamline processing of the ACATS tests to the greatest degree possible 
consistent with complete processing of all tests. 

Many Ada95 tests rely on foundation code. A foundation need not be compiled anew 
each time a different test uses it. In a processing model based on a program library, it is 
reasonable to compile the code into the library only once and allow the binder to use the 
processed results for each test that "with"s the foundation. 

A user may determine, with ACAL concurrence, that some tests require support that is 
impossible for the implementation under test to provide. For example, there are tests that 
assume the availability of file I/O whereas some (embedded target) implementations do 
not support file I/O. Those tests need not be processed during witness testing; however, 
the implementer must demonstrate that they are handled in accordance with the language 
standard. This demonstration may be performed before witness testing, in which case it 
need not be repeated. 

Annex B tests that require foreign language code (Fortran, C, Cobol) to be compiled and 
bound with Ada code need not be processed if an implementation does not support a 
foreign language interface to the respective language. 

Tests for the Specialized Needs Annexes of [Ada95] need not be processed except by 
implementations that wish to have Annex results documented. In that case, only the tests 
for the annex in question (in addition to all core tests) need be processed. If any tests for 
a particular Annex are processed, then all tests for that Annex must be processed. If an 
implementation does not support a feature in a Specialized Needs Annex test, then it must 
indicate the non-support by rejecting the test at compile time or by raising an appropriate 
exception at run time. (See [Ada95] 1.1.3(17).) 

No withdrawn test need be processed. Tests classified as Pending New in the current 
ACATS Modification List also do not need to be processed. (Pending New tests are new 
tests included with the ACATS for review purposes, and are not yet required for 
conformity assessment). 
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4.6.5 Tests with Special Processing Requirement 

Some tests may require special handling. These are primarily SNA tests, but some core 
tests are affected. For example, distributed processing tests may require an executable 
image in multiple partitions, where partitions are constructed in an implementation 
specific manner. Real-time processing tests may have configuration pragmas that have to 
be handled in an implementation specific way. Numeric Processing tests require strict 
mode processing to be selected. Each such test has a Special Requirements section in the 
test header describing any implementation specific handling that is required for the test. 

A list of all such tests is included in Appendix A. 
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4.6.5.1 Foreign Language Interface Tests 

Annex B, Interface to Other Languages, is part of the Ada95 core language. Any 
implementation that provides one or more of the packages Interfaces.C, 
Interfaces.COBOL, or Interfaces.Fortran must correctly process, and pass, the tests for 
interfaces to C, Cobol, and/or Fortran code respectively, with the possible exception of 
tests containing actual foreign code. 

An implementation that provides one or more of these Interfaces child packages must 
successfully compile the Ada units of tests with actual foreign language code. If the 
implementation does not support the actual binding of the foreign language code to Ada, 
these tests may report binding errors, or may reject the pragma Import, in which case they 
may be graded as inapplicable. If the implementation supports the binding and an 
appropriate compiler is available, the tests must execute and report "Passed". If the 
implementation supports the binding, but it is not feasible to have an appropriate 
compiler available, then the tests may be graded as inapplicable by demonstrating that 
they fail to bind. 

If one of the Interfaces child packages is not provided, then the corresponding tests may 
be graded as inapplicable, provided they reject the corresponding "with" clause. 

The tests involving interfaces to foreign code are listed in the following sections. 

The foreign language code included in ACATS tests uses no special or unique features, 
and should be accepted by any standard (C, Cobol, or Fortran) compiler. However, there 
may be dialect problems that prevent the code from compiling correctly. Modifications to 
the foreign language code are allowable; the modifications must follow the code as 
supplied as closely as possible and the result must satisfy the requirements stated in the 
file header. Such modifications must be approved in advance by the ACAL (and, if 
necessary, the ACAA). The method for compiling foreign code is implementation 
dependent and not specified as part of the ACATS. Ada code in these tests must be 
compiled as usual. The Ada code includes Pragma Import that references the foreign 
language code. The link name of foreign language object code must be provided in 
ImpDef. When all code has been compiled, the test must be bound (including the foreign 
language object code) and run. The method for binding Ada and foreign language code is 
implementation dependent and not specified as part of the ACATS. The test must report 
“PASSED” when executed. 

4.6.5.1.1 C Language Interface 
If the implementation provides the package Interfaces.C, the tests identified below must 
be satisfactorily processed as described above.  

The starred tests contain C code that must be compiled and linked if possible, as 
described above. The C code is easily identifiable because the file has the extension “.C”. 
The C code may be modified to satisfy dialect requirements of the C compiler. The C 
code files must be compiled through a C compiler, and the resulting object code must be 
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bound with the compiled Ada code. Pragma Import will take the name of the C code from 
ImpDef. 

CD30005* 
CXB3001 
CXB3002 
CXB3003 
CXB3004* 

CXB3005 
CXB3006* 
CXB3007 
CXB3008 
CXB3009 

CXB3010 
CXB3011 
CXB3012 
CXB3013* 
CXB3014 

CXB3015 
CXB3016 

 
4.6.5.1.2 Cobol Language Interface 
If the implementation provides the package Interfaces.COBOL, the tests identified below 
must be processed satisfactorily, as described above.  

The starred test contains Cobol code that must be compiled and linked if possible, as 
described above. The Cobol code is easily identifiable because the file has the extension 
“.CBL”. The Cobol code may be modified to satisfy dialect requirements of the Cobol 
compiler. The Cobol code files must be compiled through a Cobol compiler, and the 
resulting object code must be bound with the compiled Ada code. Pragma Import will 
take the name of the Cobol code from ImpDef. 

CXB4001 
CXB4002 
CXB4003 

CXB4004 
CXB4005 
CXB4006 

CXB4007 
CXB4008 
CXB4009* 

 
4.6.5.1.3 Fortran Language Interface 
If the implementation has a Fortran language interface, the tests identified below must be 
processed satisfactorily, as described above.  

The starred tests contain Fortran code that must be compiled and linked if possible, as 
described above. The Fortran code is easily identifiable because the file has the extension 
“.FTN”. The Fortran code may be modified to satisfy dialect requirements of the Fortran 
compiler. The Fortran code files must be compiled through a Fortran compiler, and the 
resulting object code must be bound with the compiled Ada code. Pragma Import will 
take the name of the Fortran code from ImpDef. 

CXB5001 
CXB5002 

CXB5003 
CXB5004* 

CXB5005* 
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4.6.5.2 Tests for the Distributed Processing Annex 

The ACATS tests for the Distribution Annex are applicable only to implementations that 
wish to test this SNA. Not all of these tests apply to all implementations, since the annex 
includes some implementation permissions that affect the applicability of some tests. 

The principal factors affecting test applicability are: 

1. whether the Remote_Call_Interface pragma is supported; 

2. whether a Partition Communication System (PCS) is provided (i.e., whether a body  for 
System.RPC is provided by the implementation); 

3.  whether the Real-Time Annex is also supported. 

An implementation may test for the annex without providing a PCS. In order to test for 
the Distribution Annex, an implementation must allow a body for System.RPC to be 
compiled. 

4.6.5.2.1 Remote_Call_Interface pragma 
[Ada95] allows explicit message-based communication between active partitions as an 
alternative to RPC [E.2.3(20)]. If an implementation does not support the 
Remote_Call_Interface pragma then the following tests are not applicable: 

BXE2009 
BXE2010 
BXE2011 
BXE2013 

BXE4001 
CXE2001 
CXE2002 
CXE4001 

CXE4002 
CXE4003 
CXE4004 
CXE4005 

CXE4006 
CXE5002 
CXE5003 
LXE3001 

4.6.5.2.2 Partition Communication System 
An implementation is not required to provide a PCS [E.5(27)] in order to test the 
Distribution Annex. If no PCS is provided then the following tests are not applicable: 

CXE1001 
CXE2001 

CXE4001 
CXE4002 

CXE4003 
CXE4004 

CXE4005 
CXE4006 

 
4.6.5.2.3 System.RPC 
Two tests provide a body for System.RPC. An implementation may include a private part 
that includes declarations, such as additional procedures and functions, that impose 
additional requirements on System.RPC. If an implementation includes additional 
declarations, then the same declarations (and implementations) may be added to the body 
of System.RPC in the tests identified below. Declarations in the private part of the 
implementation’s System.RPC do not affect the applicability of the tests in this group. 

CXE5002 CXE5003 
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4.6.5.2.4 Real-Time Annex Support 
Many implementations that support the Distribution Annex will also support the Real-
Time Annex. Test CXE4003 is designed to take advantage of Real-Time Annex features 
in order to better test the Distribution Annex. 

For implementations that do not support the Real-Time Annex, test CXE4003 must be 
modified. This modification consists of deleting all lines that end with the comment “--
RT”. 

4.6.5.2.5 Configuring Multi-Partition Tests 
Some Distribution Annex tests require multiple partitions to run the test, but no more 
than two partitions are required for running any of them. All multi-partition tests contain 
a main procedure for each of the two partitions. The two partitions are referred to as “A” 
and “B” and the main procedures for these partitions are named <test_name>_A and 
<test_name>_B respectively. Each test contains instructions naming the compilation 
units to be included in each partition. Most implementations will be primarily concerned 
with the main procedure and RCI packages that are to be assigned to each partition; the 
remainder of the partition contents will be determined by the normal dependency rules. 
The naming convention used in multi-partition tests aid in making the partition 
assignments. If the name of a compilation unit ends in “_A<optional_digit]>” then it 
should be assigned to partition A. Compilation units with names ending in 
“_B<optional_digit>“ should be assigned to partition B.  

The following tests require that two partitions be available to run the test: 

CXE1001 
CXE2001* 
CXE2002 
CXE4001 

CXE4002 
CXE4003 
CXE4004 
CXE4005 

CXE4006 
CXE5002 
CXE5003 
LXE3001 

LXE3002* 

(*) Tests CXE2001 and LXE3002 contain a Shared_Passive package and two active 
partitions. They may be configured with either two or three partitions. The two-partition 
configuration must have two active partitions and the Shared_Passive package may be 
assigned to either one of the active partitions. The three-partition configuration consists 
of two active partitions and a single passive partition, and the passive partition will 
contain the single Shared_Passive package. 

4.6.5.2.6 Running Multi-Partition Tests 
All of the multi-partition tests include the package Report in both of the active partitions. 
In order for the test to pass, both partitions must produce a passed message (except for 
LXE3002 - see special instructions for that test). If either partition produces a failed 
message, or if one or both partitions do not produce a passed message, the test is graded 
"failed". 

When running the multi-partition tests it is not important which partition is started first. 
Generally, partition A acts as a server and partition B is a client, so starting partition A 
first is usually best. 
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In the event a test fails due to the exception Communication_Error being raised, it is 
permissible to rerun the test. 

4.6.5.3 Tests for the Numerics Annex 

Many of the tests for Annex G, Numerics, must be run in strict mode. The method for 
selecting strict mode is implementation dependent and not specified by the ACATS. 
(Note that the tests for numerical functions specified in Annex A may, but need not, be 
run in strict mode.)  The following tests must be run in strict mode: 

CXG2003 
CXG2004 
CXG2006 
CXG2007 
CXG2008 
CXG2009 

CXG2010 
CXG2011 
CXG2012 
CXG2013 
CXG2014 
CXG2015 

CXG2016 
CXG2017 
CXG2018 
CXG2019 
CXG2020 
CXG2021 

CXG2022 
CXG2023 
CXG2024 

4.6.5.4 Tests that use Configuration Pragmas 

Several of the tests in Annex D, Real Time Processing, Annex E, Distributed Processing, 
and Annex H, Safety and Security, use configuration pragmas. The technique for 
applying a configuration pragma to a test composed of multiple compilation units is 
implementation dependent and not specified by the ACATS. Every implementation that 
uses any such test in a conformity assessment must therefore take the appropriate steps, 
which may include modifications to the test code and/or post-compilation processing, to 
ensure that such a pragma is correctly applied. The following tests require special 
processing of the configuration pragma: 

BA15001 
BXC5001 
BXH4001 
BXH4002 
BXH4003 
BXH4004 
BXH4005 
BXH4006 
BXH4007 
BXH4008 
BXH4009 
BXH4010 
BXH4011 
BXH4012 
BXH4013 
CXD1004 
CXD1005 

CXD2001 
CXD2002 
CXD2003 
CXD2004 
CXD2005 
CXD2006 
CXD2007 
CXD2008 
CXD3001 
CXD3002 
CXD3003 
CXD4001 
CXD4003 
CXD4004 
CXD4005 
CXD4006 
CXD4007 

CXD4008 
CXD4009 
CXD4010 
CXD5002 
CXD6002 
CXD6003 
CXDA003 
CXDB005 
CXH1001 
CXH3001 
CXH3003 
LXD7001 
LXD7003 
LXD7004 
LXD7005 
LXD7006 
LXD7007 

LXD7008 
LXD7009 
LXH4001 
LXH4002 
LXH4003 
LXH4004 
LXH4005 
LXH4006 
LXH4007 
LXH4008 
LXH4009 
LXH4010 
LXH4011 
LXH4012 
LXH4013 
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4.6.6 Focus on Specific Areas 

The ACATS test suite is structured to allow compiler developers and testers to use parts 
of the suite to focus on specific compiler feature areas. 

Both the legacy tests and the newer tests tend to focus on specific language features in 
individual tests. The name of the test is generally a good indicator of the primary feature 
content of the test, as explained in the discussion of naming conventions. Beware that 
legacy test names have not changed, but the Ada Reference Manual organization has 
changed from [Ada83] to [Ada95], so some legacy test names point to the wrong clause 
of [Ada95]. Further, note that the general style and approach of the newer tests creates 
user-oriented test situations by including a variety of features and interactions. Only the 
primary test focus can be indicated in the test name. 

ACATS 2.6 tests are divided into core tests and Specialized Needs Annex tests. Recall 
that annexes A and B are part of the core language. All annex tests (including those for 
annexes A and B) have an 'X' as the second character of their name; Specialized Needs 
Annex tests have a letter between 'C' and 'H' (inclusive) corresponding to the annex 
designation, as the third character of the test name. 

4.7 Grading Test Results 
Although a single test may examine multiple language issues, ACATS test results are 
graded "passed", "failed", or "not applicable" as a whole. 

All customized, applicable tests must be processed by an implementation. Results must 
be evaluated against the expected results for each class of test. Results that do not 
conform to expectations constitute failures. The only exceptions allowed are discussed 
above in test splitting and modification; in such cases, processing the approved modified 
test(s) must produce the expected behavior. Any differences from the general discussion 
of expected results below for executable or non-executable tests are included as explicit 
test conditions in test prologues. 

Warning or other informational messages do not affect the pass/fail status of tests.  

Expected results for executable and non-executable tests are discussed in Sections 4.7.1 - 
4.7.3. Tests that are non-applicable for an implementation are discussed in 4.7.4. 
Withdrawn tests are discussed in 4.7.5. 

4.7.1 Expected results for Executable Tests 

Executable tests (classes A, C, D, E) must be processed by the compiler and any post-
compilation steps (e.g., binder, partitioner) without any errors. They must be loaded into 
an execution target and run. Normal execution of tests results in an introductory message 
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that summarizes the test objective, possibly some informative comments about the test 
progress, a final message giving pass / fail status, and graceful, silent termination. They 
may report "PASSED", "TENTATIVELY PASSED", "FAILED", OR "NOT 
APPLICABLE". 

A test that fails to compile and bind, including compiling and binding any foundation 
code on which it depends is graded as "failed", unless the test includes features that need 
not be supported by all implementations. For example, an implementation may reject the 
declaration of a numeric type that it does not support. Allowable cases are clearly stated 
in the Applicability Criteria of tests. Annex L of [Ada95] requires implementations to 
document such implementation-defined characteristics.  

A test that reports "FAILED" is graded as "failed" unless the ACAL, and possibly the 
ACAA, determine that the test is not applicable for the implementation. 

A test that reports "PASSED" is graded as "passed" unless the test produces the pass 
message but fails to terminate gracefully (e.g., crashes, hangs, raises an unexpected 
exception, produces an earlier or later "FAILED" message). This kind of aberrant 
behavior may occur, for example, in certain tasking tests, where there are multiple 
threads of control. A pass status message may be produced by one thread, but another 
thread may  asynchronously crash or fail to terminate properly. 

A test that reports "NOT APPLICABLE" must be run by the implementation and is 
graded as "not applicable" unless it produces the not-applicable message and then fails to 
terminate gracefully. 

A test that reports "TENTATIVELY PASSED" is graded as "passed" if the test results 
satisfy the pass/fail criteria in the test. Normally, verification requires manual inspection 
of the test output. 

A test that fails to report, or produces only a partial report, will be graded as "failed" 
unless the ACAL, and possibly the ACAA, determine that the test is not applicable for 
the implementation. 

4.7.2 Expected Results for Class B 

Class B tests are expected to be compiled but are not subject to further processing and are 
not intended to be executable. An implementation must correctly report each clearly 
marked error (the notation "-- ERROR:" occurs at the right hand side of the source). A 
multiple unit B test file generally will have errors only in one compilation unit. Error 
messages must provide some means of specifying the location of an error, but they are 
not required to be in direct proximity with the "-- ERROR:" marking of the errors. 

Some B-tests also include the notation "-- OK" to indicate constructs that must not be 
identified as errors. This is especially important since some constructs were errors in 
Ada83 that are legal in Ada95. 
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Note that the error and OK markings may occur in lower or mixed case, as well as upper 
case. 

Some B-tests exercise constructs whose correctness depends on source code that is 
textually separated (e.g., a deferred constant and its full declaration). In these cases, it 
may be reasonable to report an error at both locations. Such cases are marked with "-- 
OPTIONAL ERROR". These lines may be flagged as errors by some, but not all, 
implementations. Unless an optional error is marked as an error for the wrong reason, an 
error report (or lack of it) does not affect the pass/fail status of the test. 

A test is graded as "passed" if it reports each error in the test. The content of error 
messages is considered only to determine that they are indeed indications of errors (as 
opposed to warnings, e.g.) and that they refer to the expected errors. The Reference 
Manual does not specify the form or content of error messages. In particular, a test with 
just one expected error is graded as "passed" if the test is rejected at compile time. 

A test is graded as "failed" if it fails to report on each error in the test or if it marks legal 
code as erroneous. 

4.7.3 Expected Results for Class L 

Class L tests are expected to be rejected before execution begins. They must be submitted 
to the compiler and to the linker/binder. If an executable is generated, then it must be 
submitted for execution. Unless otherwise documented, the test is graded as "failed" if it 
begins execution, regardless of whether any output is produced.. (Twenty-eight L tests 
contain documentation indicating that they may execute. See below.) 

In general, an L test is expected to be rejected at link/bind time. Some tests contain  
"-- ERROR:" indications; an implementation that reports an error associated with one of 
these lines is judged to have passed the test (provided, of course, that the link attempt 
fails). 

The following tests are exceptions to the general rule that an L test must not execute: 

Test LXE3002, for the Distributed Systems Annex, is a test that has two partitions, each of which may 
execute. As documented in the source code, this test is graded "failed" if both partitions report 
"TENTATIVELY PASSED". Other outcomes are graded as appropriate for Class L tests. 
Tests LA14001..27 (twenty-six core language tests), as documented in the source code, may execute if 
automatic recompilation is supported. These tests are graded as "passed" if they execute and report 
"PASSED". Other outcomes are graded as appropriate for Class L tests. 

4.7.4 Inapplicable Tests 

Each ACATS test has a test objective that is described in the test prologue. Some 
objectives address Ada language features that need not be supported by every Ada 
implementation (e.g., "check floating-point operations for digits 18"). These test 
programs generally also contain an explicit indication of their applicability and the 



 14 March 2007 ACATS 2.6 User's Guide  50

expected behavior of an implementation for which they do not apply. Appendix D of this 
user's guide lists common reasons for a test to be inapplicable, and lists the tests affected. 

A test may be inapplicable for an implementation given: 

• appropriate ACATS grading criteria; or 
• an ACAA ruling on a petition to accept a deviation from expected results. 

Appropriate grading criteria include: 

a. whether a test completes execution and reports "NOT APPLICABLE"; 
b. whether a test is rejected at compile or bind time for a reason that satisfies grading criteria stated in 

the test program. 

All applicable test programs must be processed and passed. 

4.7.5 Withdrawn Tests 

From time to time, the ACAA determines that one or more tests included in a release of 
the ACATS should be withdrawn from the test suite. Tests that are withdrawn are not 
processed during a conformity assessment and are not considered when grading an 
implementation. 

Usually, a test is withdrawn because an error has been discovered in it. A withdrawn test 
will not be reissued as a modified test, although it may be revised and reissued as a new 
test in the future. 

Withdrawn tests are listed in the ACATS Modification List, which is maintained by the 
ACAA. 
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4.8 Addressing Problems or Issues 
After all tests have been processed and graded, any remaining problems should be 
addressed. Test failures must be identified and resolved. This section discusses issues that 
are not due to implementation errors (bugs). 

4.8.1 Typical Issues 

Here are some typical causes of unexpected ACATS test failures (often resulting from 
clerical errors): 

Processing a test that is withdrawn; 
Processing a test that has been modified by the ACAA to correct a test error; 
Processing a test that is not applicable to the implementation (as explained in Section 
4.7.4; 
Processing files (or tests, see Section 4.5.2) in an incorrect order; 
Processing tests when units required in the environment are not present. 

Test result failures resulting from technical errors may include: 

Incorrect values in ImpDef, which provide inappropriate values to tests at run-time; 
Incorrect values in macro.dfs, which result in incorrectly customized tests; 
Incorrect substitutions in wide_character tests; 
Need to modify a test (e.g., split a B-test). 

Finally, occasionally a user discovers an error in a new ACATS test. More rarely, errors 
are uncovered by compiler advances in tests that are apparently stable. In either case, if 
users believe that a test is in error, they may file a dispute with the ACAL. The dispute 
process is described in the next section. 

4.8.2 Deviation from Expected Results - Petition & Review 

Each test indicates in its prologue what it expects from a conforming implementation. 
The result of processing a test is acceptable if and only if the result is explicitly allowed 
by the grading criteria for the test. 

A user may challenge an ACATS test on the grounds of applicability or correctness. A 
challenger should submit a petition against the test program to an ACAL or to the 
ACAA, following the procedure and the format presented in [Pro01]. A petition must 
clearly state whether it is a claim that the test does not apply to the implementation or 
that the test is erroneous. The petition must indicate the specific section of code that is 
disputed and provide a full explanation of the reason for the dispute.  

ACALs will forward petitions from their customers to the ACAA for decisions. The 
ACAA will evaluate the petitioner's claims and decide whether  
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• the test is applicable to the implementation (i.e., deviation is not allowed); 
• the test is not applicable to the implementation (i.e., deviation is allowed); 
• the test should be repaired (deviation is allowed, and the modified test should be used for 

determining conformity assessment results); 
• the test should be withdrawn (deviation is allowed and the test is not considered in 

determining conformity assessment results). 

A deviation is considered to be a test failure unless a petition to allow the deviation has 
been accepted by the ACAA. 

4.9 Reprocessing and Regrading 
After all problems have been resolved, tests that failed can be reprocessed and regraded. 
This step completes the ACATS testing process. 


