

THE
ADA CONFORMITY ASSESSMENT TEST SUITE

(ACATS)
VERSION 2.6

USER'S GUIDE

March 14, 2007

Prepared by:

Ada Conformity Assessment Authority
Randall L. Brukardt, Technical Agent

621 N. Sherman Ave., Suite B6
Madison, WI 53704

ACATS 2.6 User's Guide 14 March 2007 i

Contents

1. INTRODUCTION..1

1.1 Definition of Terms ...2

1.2 References ..4

1.3 ACATS Purpose ..5

2. CHANGES FOR ACATS 2.6..7

3. CONFIGURATION INFORMATION..9

3.1 Introduction...9

3.2 Structure ..9
3.2.1 Physical Organization ..10
3.2.2 Logical Organization ..11
3.2.3 Legacy Tests ...11
3.2.4 Foundation Code...12
3.2.5 Special Core Tests ..12
3.2.6 Foreign Language Code..13

3.3 Test Classes ..13
3.3.1 Class A..13
3.3.2 Class B ..13
3.3.3 Class C ..14
3.3.4 Class D..14
3.3.5 Class E ..15
3.3.6 Class L ..15
3.3.7 Foundation Code...16
3.3.8 Specialized Needs Annex Tests ..16

3.4 Naming Convention ..16
3.4.1 Legacy Naming...17
3.4.2 ACATS 2.6 Naming ...19
3.4.3 Multiple File Tests ..20

3.5 Test Program Format ...21

3.6 General Standards ..22

3.7 Test Structure ..23

3.8 Delivery Directory Structure..24

3.9 File Format ..25

4. USING THE ACATS...27

 14 March 2007 ACATS 2.6 User's Guide ii

4.1 Introduction... 27

4.2 Installation of the ACATS Test Suite.. 27
4.2.1 Contents of the ACATS Delivery... 27
4.2.2 Guide to Decompressing Files.. 28
4.2.3 Files With Non-Graphic Characters ... 30

4.3 Tailoring the ACATS Test Suite.. 32
4.3.1 ImpDef Customization ... 32
4.3.2 Macro Defs Customization... 33
4.3.3 Processing for Wide_Character Tests .. 34
4.3.4 Package SPPRT13 and Function FcnDecl ... 35
4.3.5 Modification of Package REPORT .. 35
4.3.6 Allowed Test Modifications ... 36

4.4 Processing the Support Files .. 37
4.4.1 Support Files... 37
4.4.2 "CZ" Acceptance Tests... 37

4.5 Establishing Command Scripts ... 38
4.5.1 Command Scripts ... 38
4.5.2 Dependencies.. 38

4.6 Processing ACATS Tests.. 39
4.6.1 Required Tests .. 39
4.6.2 Test Partitions... 39
4.6.3 Bundling Test Programs ... 39
4.6.4 Processing That May be Omitted ... 40
4.6.5 Tests with Special Processing Requirement ... 41
4.6.6 Focus on Specific Areas ... 47

4.7 Grading Test Results .. 47
4.7.1 Expected results for Executable Tests .. 47
4.7.2 Expected Results for Class B ... 48
4.7.3 Expected Results for Class L.. 49
4.7.4 Inapplicable Tests... 49
4.7.5 Withdrawn Tests... 50

4.8 Addressing Problems or Issues .. 51
4.8.1 Typical Issues ... 51
4.8.2 Deviation from Expected Results - Petition & Review .. 51

4.9 Reprocessing and Regrading ... 52

APPENDIX A: VERSION DESCRIPTION..53

A.1 Core Test Files... 55

A.2 Specialized Needs Annex Test Files... 75

A.3 Foundation Code Files.. 77

A.4 Documentation Files ... 79

ACATS 2.6 User's Guide 14 March 2007 iii

A.5 Other Files..81
A.5.1 List of ACATS 2.6 Files ...81
A.5.2 Support Units Referenced by Many Tests ..81
A.5.3 Preprocessing Tools and Data...81
A.5.4 Tests for Reporting Code..81

A.6 Tests With Special Requirements ..83

A.7 Test Files Added In ACATS 2.6...85

A.8 Test Files Modified For ACATS 2.6 ..87

A.9 Support Files Modified For ACATS 2.6..89

A.10 Test Files Deleted Since ACATS 2.5...91

APPENDIX B: PARAMETERIZATION FILES ...93

B.1 Macro Substitution File ..95

B.2 Macro Substitution Tests..97

B.3 Package ImpDef and Its Children ...99

APPENDIX C: OUTPUT OF CZ TESTS..101

C.1 Sample Output From CZ0004..103

C.2 Sample Output From CZ1101A...105

C.3 Sample Output From CZ1102A...107

C.4 Sample Output From CZ1103A...109
C.4.1 Output When External Files Are Supported ...109
C.4.2 Output When External Files Are Not Supported ..110

APPENDIX D: TEST APPLICABILITY CRITERIA...111

D.1 Compile-Time Inapplicability ..113
D.1.1 Type SHORT_INTEGER ...113
D.1.2 Type LONG_INTEGER ...113
D.1.3 Other Predefined Integer Types ..114
D.1.4 Fixed Point Restrictions..114
D.1.5 Non-binary Values of ‘SMALL..114
D.1.6 Compiler Rejection of Supposedly Static Expression ..114
D.1.7 Machine Code Insertions ..114
D.1.8 Illegal External File Names...114
D.1.9 Decimal Types ..115
D.1.10 Instantiation of Sequential_IO with indefinite types ...115
D.1.11 Special Handling Tests ..115

D.2 Reported Inapplicability...117

 14 March 2007 ACATS 2.6 User's Guide iv

D.2.1 Value of MACHINE_OVERFLOWS is False ... 117
D.2.2 SYSTEM.MAX_DIGITS... 117
D.2.3 Floating Point Overflow... 117
D.2.4 Type DURATION.. 118
D.2.5 Text Files (Non-supported Features).. 118
D.2.6 Text Files (Supported Features) ... 121
D.2.7 Sequential Files (Non-supported Features) .. 122
D.2.8 Sequential Files (Supported Features).. 123
D.2.9 Direct Files (Non-supported Features) ... 124
D.2.10 Direct Files (Supported Features) ... 126
D.2.11 Stream Files (Non-supported Features)... 127
D.2.12 Wide Text Files (Non-supported Features) ... 127
D.2.13 File I/O Tests... 127
D.2.14 Memory for Allocated Objects.. 129
D.2.15 Task Attributes .. 129
D.2.16 Reserved Interrupts ... 129
D.2.17 Multiprocessor Systems .. 129
D.2.18 Non-binary Machine Radix... 129

ACATS 2.6 User's Guide 14 March 2007 1

1. Introduction
The Ada Conformity Assessment Test Suite (ACATS) is the official test method used to
check conformity of an Ada implementation with the Ada programming language
standard (ANSI/ISO/IEC 8652:1995). The ACATS User's Guide is part of the ACATS
and is distributed with the test programs and testing support packages. It explains the
contents and use of the test suite.

The ACATS is an important part of the conformity assessment process described in
ISO/IEC-18009, Ada: Conformity of a Language Processor [ISO99]. This standard
provides a framework for testing language processors, providing a stable and
reproducible basis for testing. The Ada Resource Association has sponsored an
instantiation of that process since October 1998. The process is managed by the Ada
Conformity Assessment Authority (ACAA).

Prior to the ISO standard, the U.S. Department of Defense sponsored a similar
conformity assessment process under the Ada Joint Program Office (AJPO). The test
suite for that process was known as the Ada Compiler Validation Capability (ACVC).
The AJPO developed ACVC versions based on ANSI/MIL-STD-1815A-1983,
ISO/8652:1987 (Ada 83), which were numbered 1.x where x ranged from 1 to 11. It later
developed ACVC versions based on ANSI/ISO/IEC 8652:1995 (Ada95), numbered 2.0,
2.0.1, 2.1, and 2.2.

When the ACAA took over Ada conformity assessment, it adopted the ACVC as the
basis for its test suite. The ACAA determined to continue to use the same version
numbering for the test suite in order to avoid confusion. The version of the ACVC
current at the time (2.1) was initially used as ACATS 2.1. Later, the already developed
but unreleased ACVC 2.2 was released and used as ACATS 2.2. The ACAA later
released ACATS 2.3, ACATS 2.4, and then ACATS 2.5 to include maintenance changes
and a few new tests.

This version of the ACATS is version 2.6. As with ACATS 2.3, 2.4, and 2.5, this version
was completely developed under the auspices of the ACAA. As with it predecessors,
ACATS 2.6 contains test programs to check for conformity to new language features
defined in [Ada95], as well as test programs to check for conformity to language features
shared between Ada83 and Ada95. Subsequent maintenance or enhancement versions of
the suite, if they are required, will be numbered 2.7, etc.

The ACATS User’s Guide describes the set of ACATS tests and how they are to be used
in preparation for conformity assessment. The formal procedures for conformity
assessment are described in [Pro01], and the rules in that document govern all conformity
assessments, notwithstanding anything in this document that may be interpreted
differently. Moreover, this guide does not discuss specific requirements on processing of

 14 March 2007 ACATS 2.6 User's Guide 2

the ACATS test suite, or submission and grading of results that an Ada Conformity
Assessment Laboratory (ACAL) may impose.

The User's Guide is intended to be used by compiler implementers, software developers
who maintain a version of the ACATS as a quality control or software acceptance tool,
and third-party testers (e.g., Ada Conformity Assessment Laboratories).

Section 2 of the User’s Guide for ACATS 2.6 summarizes the changes between ACATS
2.5 and ACATS 2.6. Section 3 describes the configuration of the ACATS, including a
description of the ACATS software and delivery files. Section 4 provides step-by-step
instructions for installing and using the test programs and test support packages, and for
grading test results. The appendices include other information that characterizes the
ACATS 2.6 release.

Refer to Sections 1.1 and 4.7 for the definition of an acceptable result and the rules for
grading ACATS 2.6 test program results. Section 4.8.2 provides instructions for
submitting a petition against a test program if a user believes that a deviation from the
acceptable results for a given test program is in fact conforming behavior.

The ACATS test suite is available from any ACAL and from the Ada Information
Clearinghouse (sponsored by the ARA). See http://www.adaic.org.

1.1 Definition of Terms
Acceptable result : The result of processing an ACATS test program that meets the explicit grading

criteria for a grade of "passed" or inapplicable.

ACATS Modification List (AML) : A list maintained by the ACAA documenting the currently
modified and withdrawn tests. It also documents any new tests that have been or will be added
to the test suite. The ACATS modification list is updated from time to time as challenges from
implementers are received and processed, new tests are created, or as other technical
information is received.

ACVC Implementer’s Guide (AIG) : A document describing the test objectives used to produce test
programs for Ada83 ACVC versions (1.1-1.11). AIG section references are embedded in Ada83
test naming conventions.

Ada Conformity Assessment Authority (ACAA) : The part of the certification body that provides
technical guidance for operations of the Ada certification system

Ada Conformity Assessment Laboratory (ACAL) : The part of the certification body that carries
out the procedures required to perform conformity assessment of an Ada implementation.
(Formerly AVF)

Ada implementation : An Ada compilation system, including any required run-time support software,
together with its host and target computer systems.

ACATS 2.6 User's Guide 14 March 2007 3

Ada Joint Program Office (AJPO) : An organization within the U.S. Department of Defense that
sponsored the development of the ACVC and formerly provided policy and guidance for an
Ada certification system.

Ada programming language : The language defined by reference [Ada95].

Ada Resource Association (ARA) : The trade association that sponsors the Ada conformity
assessment system.

Ada Validation Facility (AVF) : Former designation of an Ada Conformity Assessment Laboratory
(which see).

Ada Validation Organization (AVO) : Organization that formerly performed the functions of the
Ada Conformity Assessment Authority (which see).

Certification Body : The organizations (ACAA and ACALs) collectively responsible for defining and
implementing Ada conformity assessments, including production and maintenance of the
ACATS tests, and award of Ada Conformity Assessment Certificates.

Certified Processors List (CPL) : A published list identifying all certified Ada implementations. The
CPL is available on the Ada Information Clearinghouse Internet site (www.adaic.org).

Challenge : A documented disagreement with the test objective, test code, test grading criteria, or
result of processing an ACATS test program when the result is not PASSED or
INAPPLICABLE according to the established grading criteria. A challenge is submitted to the
ACAA.

Conforming implementation : An implementation that produces an acceptable result for every
applicable test. Any deviation constitutes a non-conformity.

Core language : Sections 2-13 and Annexes A, B, and J of [Ada95]. All implementations are
required to implement the core language. The tests for core language features are required of all
implementations.

Coverage matrix : A document containing an analysis of every paragraph of [Ada95]. Each
paragraph has an indication of whether is contains a testable Ada95 requirement, whether it is
upwardly compatible from Ada83, or whether is testable in the ACATS suite (e.g. it contains an
example). Paragraphs that contain testable requirements also indicate what ACATS test(s)
specifically examine features described in the paragraph.

Deviation : Failure of an Ada implementation to produce an acceptable result when processing an
ACATS test program.

Foundation Code : Packages used by multiple tests; foundation code is designed to be reusable.
Generally a foundation is a package containing types, variables, and subprograms that are
applicable and useful to a series of related tests. Foundation code is never expected to cause
compile time errors. It may be compiled once for all tests that use it or recompiled for each test
that uses it; it must be bound with each test that uses it.

 14 March 2007 ACATS 2.6 User's Guide 4

Legacy Tests : Tests that were included in ACVC 1.12 that have been incorporated into later ACVC
and ACATS versions. The vast majority of these tests check for language features that are
upwardly compatible from Ada83 to Ada95. Some of these tests have been modified from the
ACVC 1.12 versions to ensure that Ada95 rules are properly implemented in cases where there
were extensions or incompatibilities from Ada83 to Ada95.

Specialized Needs Annex : One of annexes C through H of [Ada95]. Conformity testing against one
or more Specialized Needs Annexes is optional. There are tests that apply to each of the
Specialized Needs Annexes. Results of processing these tests (if processed during a conformity
assessment) are reported on the certificate and in the Validated Compilers List.

Test Objectives Document (TOD) : A document containing the test objectives used for new ACATS
tests that focus on Ada95-specific features.

Validated Compilers List (VCL) : Former designation of the Certified Processors List (which see).

Validated Implementation : Informally used to mean Conforming Implementation (see).

Validation : Informally used to mean conformity assessment.

Withdrawn Test : A test found to be incorrect and not used in conformity testing. A test may be
incorrect because it has an invalid test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language. Withdrawn tests are not applicable
to any implementation. Withdrawn tests are often modified and restored to subsequent ACATS
releases.

Witness Testing : Conformity assessment testing performed in the presence of ACAL personnel.
Witness testing adds the assurance that the test procedures were followed and that the results
were verified.

1.2 References
[Ada83] ANSI/MIL-STD-1815A-1983, ISO 8652:1987, FIPS 119 Reference Manual for

the Ada Programming Language--superseded by ISO-8652:95)

[Ada95] ANSI/ISO/IEC 8652:1995, FIPS 119-1 The Reference Manual for the Ada
Programming Language, February 1995

[ISO99] ISO/IEC 18009:1999, Information technology -- Programming languages -- Ada:
Conformity Assessment of a Language Processor, December 1999

[Pro01] Ada Resource Association: Operating Procedures for Ada Conformity Assessments
Version 3.0, April 2001

[TC1] ISO/IEC 8652:1995/Cor.1:2001 Programming Languages - Ada - Technical
Corrigendum 1, June 1, 2001

ACATS 2.6 User's Guide 14 March 2007 5

1.3 ACATS Purpose
The purpose of the ACATS is to check whether an Ada compilation system is a
conforming implementation, i.e., whether it produces an acceptable result for every
applicable test.

A fundamental goal of conformity assessment (validation) is to promote Ada software
portability by ensuring consistent processing of Ada language features as prescribed by
[Ada95]. ACATS tests use language features in contexts and idioms expected in
production software. While they exercise a wide range of language feature uses, they do
not and cannot include examples of all possible feature uses and interactions.

It is important to recognize that the ACATS tests do not guarantee compiler correctness.
A compilation system that correctly processes the ACATS tests is not thereby deemed
error-free, nor is it thereby deemed capable of correctly processing all software that is
submitted to it.

The ACATS tests do not check or report performance parameters (e.g., compile-time
capacities or run-time speed). They do not check or report for characteristics such as the
presence and effectiveness of compiler optimization. They do not investigate or report
compiler or implementation choices in cases where the standard allows options.

ACATS 2.6 User's Guide 14 March 2007 7

2. Changes for ACATS 2.6
Version 2.6 of the ACATS primarily is a maintenance version. It contains a few new tests
to check conformity with the Technical Corrigendum for [Ada95], [TC1]

In addition, some tests known to have problems have been modified. See Appendix A for
lists of added, deleted and modified tests.

ACATS 2.6 User's Guide 14 March 2007 9

3. Configuration Information

3.1 Introduction
This section describes the physical and logical structure of the ACATS delivery, and it
describes the test classes, naming conventions used, test program format, test structure,
delivery structure, and file format.

ACATS 2.6 is a revision of ACATS 2.5, and has the essentially the same delivery
structure. The support tools are essentially unchanged, except for updating header
comments and version identification.

The test suite does not provide tools or scripts that can be used to manage complete test
processing, since such tools are normally site specific.

3.2 Structure
The ACATS 2.6 test software includes test code that exercises specific Ada features,
foundation code (used by multiple tests), support code (used to generate test results), and
tool code (used to build tools necessary to customize ACATS tests). The suite includes
tests for the core language and tests for the Specialized Needs Annexes. Table 1
summarizes the number of tests and files in the ACATS suite.

 Total Core Tests SNA Tests Foundations Docs Other
Number of Files 4332 4000 247 45 17 23
Number of Tests 3709 3520 189 0 0 0

Table 1.

The delivery structure of the test suite is described in Section 3.8.

 14 March 2007 ACATS 2.6 User's Guide 10

3.2.1 Physical Organization

Table 1 summarizes the number of files that compose ACATS 2.6. In addition to files
containing test code proper, the ACATS 2.6 test suite includes various support files:

Others consists of

1 List of all files
14 Code that is referenced by tests
4 Code and data used for preprocessing tests to insert implementation specific

information
4 Test routines for reporting code ("CZ" tests)

Note that the number of files containing test code is larger than the number of tests in the
ACATS suite because several tests use code included in separate files.

A file name consists of a name plus an extension. Multiple files that contain code used by
a single test have related names. File names are the same as that of the test contained in
the file when possible. File names conform to MS-DOS naming conventions; therefore
they may be shorter than the software name because of file name length restrictions (e.g.,
enumchek rather than enumcheck). File (and test) names follow conventions that indicate
their function in the test suite; naming conventions are explained in Section3.4. The files
are organized into distinct directories and subdirectories based on their function in the
test suite. The directory organization is explained in Section 3.8.

The ACATS is available to the general public from an ACAL or on the Internet. Links to
the ACATS distribution can be found on the ACAA's ACATS page:

http://www.ada-auth.org/acats.html

Note that the ACATS files are available in both compressed Unix tar and DOS zipped
formats. Section 4.2.2 provides a discussion of techniques to convert these files to a
usable format.

ACATS 2.6 User's Guide 14 March 2007 11

3.2.2 Logical Organization

Table 1 summarizes the number of tests that check the conformance of an Ada
implementation to the core language and conformance to the Specialized Needs Annexes
of [Ada95].

Core tests apply to all implementations. Specialized Needs Annex tests are not required
for any implementation. Tests for a given Specialized Needs Annex may be processed by
implementations that claim implementation of that annex.

In general, no test result depends on the processing or the result of any other test.
Exceptions are noted in Section 4.5.2. No annex test depends on the implementation of
any other annex, except possibly in cases where one annex specifically depends on
another in Ada95 (e.g., no test for the Information Processing Annex uses features from
any other annex, however Real Time Annex and Distributed Processing tests may depend
on Systems Programming Annex features). [There is a single exception to this rule: see
Section 4.6.5.2.] Annex tests may use any core feature.

Tests may be created from one or more compilation units. If a test consists of a single
compilation unit (a main subprogram only), the test code will be contained in a single
file. Tests built from more than one compilation unit may require multiple files.
Moreover, some compilation units, called foundation code, may be used by more than
one test. Even in these cases, the resulting tests are strictly independent: if test A and test
B use the same foundation code, the results of processing (and running, if appropriate) A
have no effect on the results of processing (and running, if appropriate) B. Foundation
code is more fully explained in Section 3.2.4.

Tests are named using conventions that provide (limited) information about the test. The
test naming conventions are explained in Section 3.4. Each test belongs to a single test
class that indicates whether it is or is not an executable test. Test classes are explained in
Section 3.3.

In addition to test code and foundation code, there is code on which many or all of the
executable tests in the suite depend (e.g., package Report, package ImpDef, package
TCTouch). Some of this code must be customized to each implementation. There is also
code that must be used to build support tools used to customize the suite of tests to an
implementation. The customization process is described in Section 4.3.

3.2.3 Legacy Tests

Many tests check only language features that are common to Ada83 and Ada95. The vast
majority of these tests came unmodified from the ACVC 1.12 suite. Some tests were
modified to check for the correct implementation of Ada95 rules in cases where language
rules changed from Ada83.

 14 March 2007 ACATS 2.6 User's Guide 12

3.2.4 Foundation Code

Some tests use foundation code. Foundation code is reusable across multiple tests that are
themselves independent of each other. It is intended to be compiled and included in an
environment as part of the compilation process of a test. If the test is executable, the
foundation code must be bound with all other code for the test prior to execution.

Foundation code is always expected to compile successfully; it is never expected to be
run by itself. Foundation code is not, in and of itself, a test, and is therefore not
characterized by a test class (see 3.3). One may think of it as providing some utility
definitions and routines to a number of different tests. Names of foundation units (and
therefore names of files containing foundation code) are distinguished as described in
Naming Convention, Section 3.4.

3.2.5 Special Core Tests

This section identifies tests that appear in the Core (since their requirements are
enunciated there) but that may be graded as non-supported for implementations not
claiming support of certain Specialized Needs Annexes.

Annex C Requirements

Section 13 of [Ada95] includes implementation advice paragraphs. The ACATS does not
require implementations to conform to those paragraphs unless they claim support for
Annex C, Systems Programming (cf. C.2(2): “The implementation shall support at least
the functionality defined by the recommended levels of support in Section 13.”)

Tests that check conformance to the implementation advice are listed below:

CD10001 CD30005 CD40001
CD20001 CD33001 CD72A01
CD30001 CD33002 CD72A02
CD30002 CD30004 CD90001
CD30003

Implementations that claim support for Annex C are required to process and pass the tests
listed above.

Implementations that do not claim support for the appropriate Annexes are still required
to process these tests. Such implementations may reject the lines marked with the special
comment "-- ANX-C RQMT", in which case the test will be graded as "unsupported". If
an implementation accepts such lines in one of these tests, then the test must be bound
(linked) and executed, with a passed or not_applicable result.

ACATS 2.6 User's Guide 14 March 2007 13

3.2.6 Foreign Language Code

Several tests for Annex B features (and one Section 13 test) include files containing non-
Ada code (Fortran, C, Cobol). These tests must be compiled, bound, and run by
implementations that support foreign language interfaces to the respective non-Ada
language. The foreign language code uses only the most basic language semantics and
should be compilable by all Fortran, C, and Cobol compilers, respectively. In cases
where a foreign language does not accept the code as provided, modifications are
allowable. See Section 4.3.6.

Files that contain foreign code are identified by a special file extension. See Section
3.4.2.

The tests that include Fortran code are: CXB5004 and CXB5005

The tests that include C code are: CXB3004, CXB3006, CXB3013 and CD30005

The test that includes Cobol code is: CXB4009

3.3 Test Classes
There are six different classes of ACATS tests, reflecting different testing requirements
of language conformity testing. Each test belongs to exactly one of the six classes, and its
membership is encoded in the test name, as explained later. The purpose and nature of
each test category is explained below. The test classifications provide an initial indication
of the criteria that are used to determine whether a test has been passed or failed.

3.3.1 Class A

Class A tests check for acceptance (compilation) of language constructs that are expected
to compile without error.

An implementation passes a class A test if the test compiles, binds, and executes
reporting "PASSED". Any other behavior is a failure.

Only legacy tests are included in this class.

3.3.2 Class B

Class B tests check that illegal constructs are recognized and treated as fatal errors. They
are not expected to successfully compile, bind, or execute. Lines that contain errors are
marked "-- ERROR:" and generally include a brief description of the illegality on the
same or following line. (The flag includes a final “:” so that search programs can easily
distinguish it from other occurrences of the word “error” in the test code or
documentation.) Some tests also mark some lines as "-- OK", indicating that the line

 14 March 2007 ACATS 2.6 User's Guide 14

must not be flagged as an error. Lines so marked are often, but not always, constructs
that were errors in Ada83 but are correct in Ada95.

An implementation passes a class B test if each indicated error in the test is detected and
reported, and no other errors are reported. The test fails if one or more of the indicated
errors are not reported, or if an error is reported that cannot be associated with one of the
indicated errors. If the test structure is such that a compiler cannot recover sufficiently to
identify all errors, it may be permissible to "split" the test program into separate units for
re-processing (see Section 4.3.6 for instructions on modifying tests).

In some cases and for some constructs, compilers may adopt various error handling and
reporting strategies. In cases where the test designers determined that an error might or
might not be reported, but that an error report would be appropriate, the line is marked
with "-- OPTIONAL ERROR:" or a similar phrase. In such cases, an implementation is
allowed to report an error or fail to report an error without affecting the final grade of the
test.

3.3.3 Class C

Class C tests check that executable constructs are implemented correctly and produce
expected results. These tests are expected to compile, bind, execute and report
"PASSED" or "NOT-APPLICABLE". Each class C test reports "PASSED", "NOT-
APPLICABLE", or "FAILED" based on the results of the conditions tested.

An implementation passes a class C test if it compiles, binds, executes, and reports
“PASSED”. It fails if it does not successfully compile or bind, if it fails to complete
execution (hangs or crashes), if the reported result is "FAILED", or if it does not produce
a complete output report.

The tests CZ1101A, CZ1102A, CZ1103A, and CZ00004 are treated separately, as
described in Section 4.4.2.

3.3.4 Class D

Class D tests check that implementations perform exact arithmetic on large literal
numbers. These tests are expected to compile, bind, execute and report "PASSED". Each
test reports "PASSED" or "FAILED" based on the conditions tested. Some
implementations may report errors at compile time for some of them, if the literal
numbers exceed compiler limits.

An implementation passes a class D test if it compiles, binds, executes, and reports
“PASSED”. It passes if the compiler issues an appropriate error message because a
capacity limit has been exceeded. It fails if does not report “PASSED” unless a capacity
limits is exceeded. It fails if it does not successfully compile (subject to the above caveat)

ACATS 2.6 User's Guide 14 March 2007 15

or bind, if it fails to complete execution (hangs or crashes), if the reported result is
"FAILED", or if it does not produce an output report or only partially produces one.

 Only legacy tests are included in this class.

3.3.5 Class E

Class E tests check for constructs that may require inspection to verify. They have special
grading criteria that are stated within the test source. They are generally expected to
compile, bind and execute successfully, but some implementations may report errors at
compile time for some tests. The "TENTATIVELY PASSED" message indicates special
conditions that must be checked to determine whether the test is passed.

An implementation passes a class E test if it reports "TENTATIVELY PASSED", and
the special conditions noted in the test are satisfied. It also passes if there is a compile
time error reported that satisfies the special conditions. Class E tests fail if the grading
criteria in the test source are not satisfied, or if they fail to complete execution (hang or
crash), if the reported result is "FAILED", or if they do not produce a complete output
report.

Only legacy tests are included in this class.

3.3.6 Class L

Class L tests check that all library unit dependencies within a program are satisfied
before the program can be bound and executed, that circularity among units is detected,
or that pragmas that apply to an entire partition are correctly processed. These tests are
normally expected to compile successfully but not to bind or execute. Some
implementations may report errors at compile time; potentially illegal constructs are
flagged with "-- ERROR:". Some class L tests indicate where bind errors are expected.
Successful processing does not require that a binder match error messages with these
indications.

An implementation passes a class L test if does not successfully complete the bind phase.
It passes a class L test if it detects an error and issues a compile time error message. It
fails if the test successfully binds and/or begins execution. An L test need not report
"FAILED" (although many do if they execute).

As with B-tests, the test designers determined that some constructs may or may not
generate an error report, and that either behavior would be appropriate. Such lines are
marked with "-- OPTIONAL ERROR:" In such cases, an implementation is allowed to
report an error or fail to report an error. If an error is reported at compile time, the binder
need not be invoked. If no errors are reported at compile time, the binder must be
invoked and must not successfully complete the bind phase (as indicated by the inability
to begin execution).

 14 March 2007 ACATS 2.6 User's Guide 16

3.3.7 Foundation Code

Files containing foundation code are named using the regular test name conventions (see
Section 3.4). It may appear from their names that they represent class F tests. There is no
such test class. Foundation code is only used to build other tests, so foundation units are
not graded. However, if a foundation unit fails to compile, then the tests that depend on it
cannot be compiled, and therefore will be graded as failed.

3.3.8 Specialized Needs Annex Tests

Specialized Needs Annex tests have no separate classifications and are classified in the
same way as all other tests. There are Class B, Class C, and Class L SNA tests.

3.4 Naming Convention
This section describes the naming conventions used in ACATS 2.6, specifically as they
apply to files. All file names are of the form <name>.<type>, where <type> is a one, two,
or three character extension. File names indicate test class, compilation order (if
applicable), and whether the test is implementation dependent or requires customization.
When a test is included in a single file, <name> duplicates the test name. The same is
true of a foundation. In multiple file tests, the first 7 characters of the file <name> are
normally the same as the name of the test, however in some cases, the structure of the test
requires that the file name be different from the Ada unit. The application of the
conventions to tests is straightforward.

There are two different but similar naming conventions used in ACATS 2.6. Legacy tests
use the naming conventions of early ACVC versions. Tests new since ACVC 1.12 use
the new convention. The conventions are consistently distinguishable at the 7th character
of the name: legacy names have a letter in the 7th position, whereas newer names have a
digit.

ACATS 2.6 User's Guide 14 March 2007 17

3.4.1 Legacy Naming

The name of a legacy test is composed of seven or eight characters. Each character
position serves a specific purpose as described in the table below. The first column
identifies the character position(s) starting from the left, the second column gives the
kind of character allowed, and the third gives the corresponding meaning:

Position
1 Letter Test class (cf. Section 3.3)
2 Hexadecimal AIG chapter containing the test objective
3 Hexadecimal Section within the above AIG chapter
4 Alphanumeric Sub-section of the above AIG section
5-6 Decimal Number of the test objective within the above sub-section
7 Letter Letter identifier of the sub-objective of the above objective.
8 Alphanumeric optional - Compilation sequence identifier -- indicates the compilation

order of multiple files that make up a single test. This position is used
only if the test comprises multiple files.

The convention is illustrated in Figure 1.

compilation order

b a 3 0 0 8 b 1 . a d a

Sometimes
Used

Always
Used

class

AIG (Ada83) ref
objective number

sequence

Figure 1. Legacy File Name Convention

In multiple file tests, the intended order of compilation is indicated by a numeral at
position 8. The first file to be compiled has '0', the second has '1', and so forth.

The chapter and section numbers of the AIG correspond to those in [Ada83].

Note: The use of a ninth character ('m') to indicate the file containing the main
subprogram has been discontinued. The following table lists the files containing the main
subprograms of the legacy multiple file tests.

AD7001C0
AD7001D0
B38103C3
B38103E0

B63009C3
B73004B0
B83003B0
B83004B0

B83004C2
B83004D0
B83024F0
B83E01E0

B83E01F0
B86001A1
B95020B2
BA1001A0

 14 March 2007 ACATS 2.6 User's Guide 18

BA1010A0
BA1010B0
BA1010C0
BA1010D0
BA1010E0
BA1010F0
BA1010G0
BA1010H0
BA1010I0
BA1010J0
BA1010K0
BA1010L0
BA1010M0
BA1010N0
BA1010P0
BA1010Q0
BA1011B0
BA1011C0
BA1020A0
BA1020B6
BA1020C0
BA1020F2

BA1101B0
BA1101C2
BA1109A2
BA1110A1
BA2001F0
BA2003B0
BA2011A1
BA3001A0
BA3001B0
BA3001C0
BA3001E0
BA3001F0
BA3006A6
BA3006B4
C38108C1
C38108D0
C39006C0
C39006F3
C64005D0
C83022G0
C83024E1
C83F01C2

C83F01D0
C83F03C2
C83F03D0
C86004B2
C86004C2
CA1011A6
CA1012A4
CA1012B4
CA1013A6
CA1014A0
CA1020E3
CA1022A6
CA1102A2
CA2001H3
CA2002A0
CA2003A0
CA2004A0
CA2007A0
CA2008A0
CA2009C0
CA2009F0
CA3011A4

CA5003A6
CA5003B5
CA5004B1
CC3019B2
CC3019C2
LA5001A7
LA5007A1
LA5007B1
LA5007C1
LA5007D1
LA5007E1
LA5007F1
LA5007G1
LA5008A1
LA5008B1
LA5008C1
LA5008D1
LA5008E1
LA5008F1
LA5008G1

The file name extension is three characters long. There are four extensions:

.ada A file that contains only Ada code. It does not require any pre-processing to create a
compilable test. It will be submitted directly to the implementation for determination of test
results. All implementations must correctly process these tests.

.dep A file that has a test involving implementation-dependent features of the language. These
tests may not apply to all implementations.

. ts t A file that has "code" that is not quite Ada; it contains "macro" symbols to be replaced by
implementation-dependent values, and it must be customized (macro expanded) to prepare it
for compilation (see Section 4.3.2). Once customized, the resulting test must be processed as
indicated by its class.

.adt A file that has been modified by the macro processor. It contains only Ada code and may be
submitted to the implementation for results. All implementations must correctly process these
tests. There are no files in the ACATS distribution with this extension; they are only
produced as the output of the macro processor.

Tests developed since ACVC 1.12 use different file name extensions.

Note that legacy tests have not been renamed for ACATS 2.6. Since [Ada95] includes some
organizational differences from [Ada83], this means that the name of a legacy test sometimes will
not correspond to the clause of [Ada95] in which the tested feature is described.

ACATS 2.6 User's Guide 14 March 2007 19

3.4.2 ACATS 2.6 Naming

The name of an Ada95 test is composed of seven or eight characters. Foundation code
has a name composed of seven characters. The use of each character position is described
below. The first column indicates the character position(s) starting from the left, and the
second column indicates the kind of character allowed, and the third column gives the
corresponding meaning:

Position
1 Letter Test class; foundations are marked 'F'
2 Alphanumeric If other than an 'x', the section of [Ada95] describing the feature under

test. An 'x' indicates that the test includes one or more features from an
annex of [Ada95]

3 Alpha-numeric Core clause or annex letter identifier (either core or Specialized Needs
Annex)

4 Hexadecimal Sub-clause (if a core test), or clause (if an annex test)
5 Alphanumeric Foundation identifier (alphabetic, unless no foundation is required, in

which case a '0')
6-7 Decimal Sequence number of this test in a series of tests for the same clause;

foundation code will have "00".
8 Alphanumeric optional - Compilation sequence identifier -- indicates the suggested or

required compilation order of multiple files that make up a single test (0
is compiled first). This position is used only if the test comprises
multiple files.

This convention is illustrated in Figure 2.

compilation order
Sometimes
Used

Always
Used

class
sequence

main procedure

section
or 'x'

clause
or annex

foundation

b a 3 0 0 1 3 1 . a m

clause or
subclause

Figure 2. Naming convention in ACATS 2.6

The file name extension is a one or two character file name extension. There are six
extensions:

 14 March 2007 ACATS 2.6 User's Guide 20

.a A file that contains only Ada code (except for configuration pragmas in the case of some
Specialized Needs Annex tests). It does not require any processing to prepare it for
compilation (unless configuration pragmas must be handled separately). It is normally
submitted directly to the implementation for determination of test results.

.am A file that contains the main subprogram for a multi-file test. Generally, this extension is used
for only one file of a test. In rare cases (some Annex E tests), a multi-file test may have more
than one file containing a "main" subprogram; in such cases, the correct testing procedure is
described in the Special Requirements section of the test prologue.

.aw A file that has "code" that is not quite Ada; it contains one or more designated strings that
must be replaced by a character from the upper half of ISO8850-1 (Latin-1) (see Section
4.3.3). The resulting test must be compiled and run as all other class C tests.

. f tn A file that contains Fortran language code and must be compiled by a Fortran compiler.
These files are used by tests that check a foreign language interface to Fortran.

.c A file that contains C language code and must be compiled by a C compiler. These files are
used by tests that check a foreign language interface to C.

.cbl A file that contains Cobol language code and must be compiled by a Cobol compiler. These
files are used by tests that check a foreign language interface to Cobol.

A test that depends on foundation code has an alphabetic character in the fifth position of
its name. The required foundation will have the same characters in the second through
fifth positions of its name. For example, C123Axx depends on F123A00.

3.4.3 Multiple File Tests

When tests are contained in multiple files (i.e., compilation units are contained in
different files), the file names are related. The first seven positions of the names of all the
files (other than foundation files) comprised by a single test will be identical. The eighth
position will provide a distinguishing alphanumeric which indicates the required
compilation order. In legacy tests, the main program is not indicated (see the table in
section 3.4.1 for files containing main subprograms). For newer tests, the extension ".am"
indicates the file with the main program.

All tests apply the convention of naming the main subprogram the same as the file
(excluding the file extension) plus the letter 'm' (for legacy tests only). For example, the
legacy test, C39006F, is contained in four files, named c39006f0.ada, c39006f1.ada,
c39006f2.ada, and c39006f3.ada. The main sub-program of the test is contained in
c39006f3.ada and is named "C390006F3M". The test C390006 is also contained in
four files, named c3900060.a, c3900061.a, c3900062.a, and c3900063.am. The
main subprogram of the test is contained in c3900063.am and is named "C3900063".

There are a small number of Specialized Needs Annex tests for the Distributed
Processing Annex that require two active partitions and have two main subprograms.
These tests have two files with the .am extension to signify the location of the (multiple)
main subprograms.

ACATS 2.6 User's Guide 14 March 2007 21

3.5 Test Program Format
Each test file is composed of a test prologue, documenting the test, and the test code
proper. All prologue lines are marked as comments. [The prologue in files containing
non-Ada code is marked according to the comment conventions of the foreign language.]

The prologue for all tests is based on that of legacy tests. Legacy tests are generally, but
not entirely, consistent in their use of the prologue. The format of the prologue between
test files and foundation files is slightly different.

The general format of the prologue is as follows:

<file name> - The distribution name of the file containing this prologue.

DISCLAIMER - Use restrictions for ACATS tests; included in all tests.

OBJECTIVE - A statement of the test objective; included in all tests.

TEST DESCRIPTION - A short description of the design or strategy of the test or other pertinent
information. Included in all newer tests but not generally included in legacy tests.

SPECIAL REQUIREMENTS - optional - Included if the test has any special requirements for
processing. Normally, this section will be found only in Specialized Needs Annex tests. For
example, an Annex E test may check for the correct implementation of partitions; the
requirements for test partitioning and what to use as a main subprogram in each partition would
be documented in this section.

TEST FILES - optional - Included if the test depends on multiple files; identifies the component files
of a multi-file test.

APPLICABILITY CRITERIA - optional - Specifies the conditions under which the test can be ruled
inapplicable.

PASS/FAIL CRITERIA - optional - Explains how to interpret compilation, binding, and/or run-time
results for grading the test.

MACRO SUBSTITUTIONS - optional - Identifies the macro symbol(s) in the file that must be
replaced and provides a brief description of what the replacement(s) represent.

CHANGE HISTORY- History of the test file. Included in all tests.

All tests have the line immediately after the disclaimer marked "--*". The newer tests
have the line after the last prologue line (before the first line of executable code) marked
"--!" No other comment lines are marked with those conventions, so the next line after
the disclaimer and the first line of code may be found quickly with an editor search.

Some tests are composed of multiple files (other than foundation code). Rather than
repeating the complete prologue in each file, an alternate approach has been used. The
file containing the main program has the complete prologue; the other, related files have

 14 March 2007 ACATS 2.6 User's Guide 22

those sections that apply to files (TEST FILES, CHANGE HISTORY) and refer to the
main file for the other sections.

3.6 General Standards
ACATS tests were developed to a general set of standards. To promote a variety of code
styles and usage idioms in the tests, standards were not necessarily rigorously enforced
but were used as guidelines for test writers. A maximum line length of 79 characters was
used to enhance electronic distribution of tests (except when specific testing requirements
dictated otherwise, usually in .dep and .tst files). Tests tend to be about 120 executable
lines long, though many tests deviate from this norm (either longer or shorter) to achieve
a design that focuses on the objective and a readable, maintainable test. Sometimes
complex objectives have been divided into sub-objectives to achieve complete coverage
in comprehensible, maintainable tests. Some tests check multiple sub-objectives; in other
cases, sub-objectives are checked in separate tests.

Legacy tests use only the basic 55-character set (26 capital letters, 10 digits, and 19
punctuation marks). Unless there is a specific test requirement, numeric values are in the
range (-2048..2047), which can be represented in 12 bits. Numeric values are generally in
the range (-128..127). Tests new to ACATS 2.x use both upper and lower case letters and
may use larger numeric values (but within the range (-65536..65535) except in rare
cases).

Legacy tests tend to use as few Ada features as necessary to write a self-checking
executable test that can be read and maintained. Newer tests tend to exhibit a usage-
oriented style, employing a rich assortment and interaction of features and exemplifying
the kind of code styles and idioms that compilers may encounter in practice.

In the newer tests, Ada reserved words are entirely in lower case. Identifiers normally
have their initial letter capitalized. Every attempt has been made to choose meaningful
identifiers. In B class tests, identifier names often provide a clue to the specific case or
situation under test. In C class tests, identifiers are normally chosen to help document the
test design or the intent of the code.

The newer executable tests generally provide some visual separation of those test
elements that focus on conformance issues from those that govern the flow of a test. For
example, there is frequently a need to establish preconditions for a test and examine post-
conditions after a section of test code has executed. To distinguish between constructs
(types, objects, etc.) that are part of the test code and those that are artifacts of the testing
process (e.g., pre-, post-conditions), the latter have "TC_" prefixed to the identifier name.
This prefix is shorthand for "Test_Control".

ACATS 2.6 User's Guide 14 March 2007 23

3.7 Test Structure
Executable tests (class A, C, D, and E) generally use the following format:

 with Report;
 procedure Testname is
 <declarations>
 begin
 Report.Test ("Testname", "Description ...");
 ...
 <test situation yielding result>
 if Post_Condition /= Correct_Value then
 Report.Failed ("Reason");
 end if;
 ...
 Report.Result;
 end Testname;

The initial call to Report.Test prints the test objective using Text_IO output. After each
section of test code, there is normally a check of post conditions. The if statement in this
skeleton is such a check; unexpected results produce a call to Report.Failed. The
sequence of test code / check of results may be repeated several times in a single test.
Finally, there is a call to Report.Result that will print the test result to Text_IO output.
Often, but not always, this structure in enclosed in a declare block.

One or more calls to Report.Failed will report a result of "FAILED" and a brief
suggestion of the likely reason for that result.

More complex tests may include calls to Report.Failed in the code other than in the main
program, and therefore exhibit the following format for the main procedure:

 with Report;
 procedure Testname is
 <declarations>
 begin
 Report.Test ("Testname", "Description ...");
 ...
 Subtest_Call;
 ...
 Report.Result;
 end Testname;

Fail conditions are detected in subprograms (or tasks) and Report.Failed is called within
them.

Occasionally, as a test is running, it will determine that it is not applicable. In such a
case, it will call Report.Not_Applicable that will report a result of
"NOT_APPLICABLE" (unless there is also a call to Report.Failed).

Often, a test calls one of the functions Report.Ident_Int or Report.Ident_Bool to obtain a
value that could be provided as a literal. These functions are intended to prevent

 14 March 2007 ACATS 2.6 User's Guide 24

optimizers from eliminating certain sections of test code. The ACATS suite has no
intention of trying to discourage the application of optimizer technology, however
satisfactory testing of language features often requires the presence and execution of
specific lines of test code. Report.Ident_Int and Report.Ident_Bool are structured so that
they can be modified when needed to defeat optimizer advances.

Class B tests may be structured differently. Since they are not executable, they normally
do not include calls to Report.Test or Report.Result (since those lines of code would have
no output effect). Instead, intentional errors are coded that invoke specific legality rules.
The source code includes comments that document expected compiler results. Legal
constructs may also be included in B class tests. Constructs that are allowed by the
legality rules are marked "-- OK"; constructs that are disallowed are marked "--
ERROR:". There is usually a brief indication of the nature of an intentional error on the
same line or the line following a comment. The indications of expected results are
approximately right justified to the code file margin, about column 79, for quick visual
identification.

Class L tests are multifile tests with illegalities that should be detected at bind time. They
are generally structured like class C tests, often with calls to Report.Test and
Report.Result, but they are not expected to execute.

3.8 Delivery Directory Structure
The delivery of ACATS tests is structured into a directory tree that reflects the
organization of the test suite and support code. See Fig. 3.

The top-level directory contains the support subdirectory, the docs subdirectory, and a
subdirectory for each major grouping of tests. The support subdirectory contains all
support packages (Report, ImpDef, TCTouch) and the source code for all test processing
tools (Macro expander, Wide Character processor). Each of the other subdirectories
contains all tests that begin with the indicated prefix. For example, all of the B2* tests are
in the b2 subdirectory; all of the CXH* tests are in the cxh subdirectory. Note that all of
the A* tests are in the a directory, all of the D* tests are included in the d subdirectory,
and all of the E* tests are included in the e subdirectory. The l directory contains the L
tests for the core; other L tests are in directories named with three letters, indicating the
class (l) and the Specialized Needs Annex to which the tests apply.

Subdirectories that would be empty are not stubbed.

Figure 3 sketches this scheme, but does not show complete detail. A list of all
subdirectories is included in Section 4.2.2.

ACATS 2.6 User's Guide 14 March 2007 25

ACATS 25

 a b2 … be bxa .. bxh c2 ... ce cxa … cxh cz d e l lxd .. lxh docs support

note: subdirectory names and connecting line links
are not a complete list of subdirectories

Figure 3. Delivery Directory Structure

3.9 File Format
To conserve space, all files in the delivered ACATS 2.6 (including test files, foundation
files, and support files) have been compressed. Decompressed files (see Section 4.2.2)
use only ASCII characters. Other than the documentation files, no formatting control
characters, rulers or other information intended for word processors or editors is included
in the files. (The documentation files are all provided as ASCII text files, but a version
formatted for Microsoft Word 97 is also provided for greater readability).

Files with the .zip extension have been compressed using a DOS zip utility; files with the
.Z extension have been first put in Unix tar format and then compressed with Unix
compress.

 14 March 2007 ACATS 2.6 User's Guide 26

1. Install Software

4. Establish Command Scripts

3. Process Support Files

Define compiler options
Omit withdrawn tests
Account for order dependencies
Compile class F files

Compile class B tests
Compile and bind class
 L tests
Compile, bind, execute
 class A,C,D,E tests

continue

2. Tailor Software

2.1 Modify Package ImpDef

if required

2.2 Modify tests as needed
 process .tst and .aw files

2.2 b Define function declarations
 modify FCNDECL package specification
 create FCNDECL package body
 replace macro substitutions with function calls

2.3 Inspect reporting mechanism
 modify package Report if needed

3.2 Verify reporting mechanism
and file I/O implementation
 process CZ tests
 verify results

3.1 Compile:
 REPSPEC SPPRT13
 REPBODY CHECKFIL
 IMPDEF LENCHECK
 FCNDECL TCTOUCH
 ENUMCHEK

continue

6. Grade Test Results

7. Address Problems or Issues

Withdrawn test processed?
Test applicability?
Incorrect processing order?
Program library corrupted?

Incorrect parameterization?
B-test split required?
Test dispute?

if required

Testing Complete

8. Reprocess and/or
Regrade Problem Tests

5. Process ACATS Tests

Figure 4 (Cont.) Using the ACATS

ACATS 2.6 User's Guide 14 March 2007 27

4. Using The ACATS

4.1 Introduction
There are eight major steps involved in using the ACATS test suite; two of them are
sometimes not required. The steps are: installing the software, tailoring the software,
processing the support files, establishing command scripts, processing the ACATS tests,
grading the test results, addressing problems (if necessary), and reprocessing problem
tests (if necessary). The first six of these tasks must be completed successfully to
accomplish a test run. The first four normally need be completed only once for each
ACATS release. Each step is explained in the following sections. The flow from one to
the next is illustrated in figure 4.

4.2 Installation of the ACATS Test Suite
 The ACATS test suite must be unloaded from the delivery medium or downloaded from
a delivery site before it can be unpacked, customized for an implementation, run, and
graded.

4.2.1 Contents of the ACATS Delivery

The delivery consists of 8 archives (sets of compressed files) or 8 compressed tar files.
Each archive or compressed tar file contains compressed versions of ACATS software
(test, foundation, and/or support code) structured into a directory tree. Files must be
extracted from the archives. Each archive contains a readmex.txt file (where 'x' is a digit
representing the number of the archive), which contains decompression suggestions and
an overview of the contents of the archive or tar file. These files are not considered part
of the ACATS; they exist so that someone finding one of the archive files can identify
what it is. The remainder of the archive contents is described later in this section.

Usually, some test errors will be noted in the test suite. If possible, the ACAA will
correct the errors and issue a corrected test. If a correction is not possible, the test will be
withdrawn. Withdrawn tests are not used in conformity assessments. For a period after
the issuance of a corrected test, either the original or the corrected test can be used for
conformity assessment. See the ACAA's procedures [Pro01] for details.

The ACAA also will issue new tests periodically. As with modified tests, new tests must
be available for a period of time before they are required in conformity assessments.

These changes are documented in the ACATS Modification List (AML). This list
includes a list of all new tests, all modified tests, and all withdrawn tests, and an
indication as to when each will be (or is) required for conformity assessments. Each

 14 March 2007 ACATS 2.6 User's Guide 28

version of the modification list is given a suffix letter. An archive and tar file containing
the new and/or modified tests is available. The files are named MOD_2_6x, where 'x'
represents the suffix letter for the AML version.

These files can be found on the ACAA's web site:
www.ada-auth.org

The AML is also distributed by e-mail. To receive these lists, join the ACAA mailing list.
To do so, simply send a message to

listserv@ada-auth.org

with a body of
Join Acaa

4.2.2 Guide to Decompressing Files

The ACATS files are provided in two forms: compressed in zip format and compressed
in Unix compress format. Zipped files are included in 8 zip archives (files) with the file
extension .zip. Eight Unix compressed files, with extension .Z, contain Unix tar files.
This section provides generic instructions for uncompressing them. These instructions are
not the only ways to uncompress the files; sophisticated users may wish to use their own
procedures.

If the instructions below are used, the following subdirectories will have been created and
populated with test files after all decompression:

./acats2_6/a

./acats2_6/b2

./acats2_6/b3

./acats2_6/b4

./acats2_6/b5

./acats2_6/b6

./acats2_6/b7

./acats2_6/b8

./acats2_6/b9

./acats2_6/ba

./acats2_6/bb

./acats2_6/bc

./acats2_6/bd

./acats2_6/be

./acats2_6/bxa

./acats2_6/bxb

./acats2_6/c2

./acats2_6/c3

./acats2_6/c4

./acats2_6/c5

./acats2_6/c6

./acats2_6/c7

./acats2_6/c8

./acats2_6/c9

./acats2_6/ca

./acats2_6/cb

./acats2_6/cc

./acats2_6/cd

./acats2_6/ce

./acats2_6/cz

./acats2_6/d

./acats2_6/e

./acats2_6/l

./acats2_6/cxa

./acats2_6/cxb

./acats2_6/bxc

./acats2_6/bxd

./acats2_6/bxe

./acats2_6/bxf

./acats2_6/bxg

./acats2_6/bxh

./acats2_6/cxc

./acats2_6/cxd

./acats2_6/cxe

./acats2_6/cxf

./acats2_6/cxg

./acats2_6/cxh

./acats2_6/lxd

./acats2_6/lxe

./acats2_6/lxh

./acats2_6/docs

./acats2_6/support

ACATS 2.6 User's Guide 14 March 2007 29

Note that the names are given here in all lowercase; some systems may create lowercase
names. The path separator, shown here as '/', may also differ.

4.2.2.1 Decompressing Zipped Files

All ACATS files have been compressed (zipped) into compressed archives (zip-files) that
have the MS-DOS file extension ".zip". A DOS utility was used to compress them. They
must be decompressed before they can be further processed. A decompression utility is
available from the source of the ACATS distribution. All ACATS 2.6 files may be
decompressed using the following steps. Approximately 25 MB of free space on a DOS
machine hard drive will be required to accomplish the decompression using this
technique.

Create a directory on the hard disk to contain ACATS. In these examples, we assume the
name is "acats2_6", but any name can be used. Copy each archive (file with .zip
extension) to the hard disk in the new directory. Decompress it insuring that directories
are used. For the "unzip" program, this is the default setting. For the "pkunzip" program,
this is the -d option. For the "winzip" program, insure that "Use Directory Names" is
checked. Also, insure that the files are decompressed into the proper directory. For
command line decompressors, this means insuring that the current subdirectory is
acats2_5. For "winzip", this simply means selecting acats2_5 as the extract path.

For example, using unzip, and assuming that the archive name is ACATS2.zip, type
cd acats2_6

to set the proper directory, and
unzip ACATS2

to extract the files.

The files were compressed on a Windows system, where <CR><LF> is used as a line
terminator. Decompressors for other systems using other line terminators should be able
convert the line terminators. The ACAA has a short Ada program which converts a file
from Windows to Unix format; please send the ACAA mail at agent@ada-auth.org to
request it if needed.

After all files have been extracted from the archive, delete the archive file from the hard
disk if you wish to conserve space.

As it decompresses files, unzip will restore the directory structure of the files, creating all
needed subdirectories.

Some users may prefer to work with ACATS files in an alternate directory structure or
none at all. If the unzip utility is invoked with the "-j" option, all files in the archive will
be decompressed and placed in the local working directory. In other words, none of the
above subdirectories will be created. Since there are too many ACATS files to fit into a

 14 March 2007 ACATS 2.6 User's Guide 30

root DOS directory, if you wish to put all files in a single directory, you must first create
a subdirectory (e.g., mkdir \ACATS) and unzip all archives there.

4.2.2.2 Decompressing Unix Compress Files

All ACATS files have been included in 8 Unix tar format files and then compressed
using the Unix compress utility. To create a set of ACATS files, first copy the
compressed files acats26?.tar.Z from the distribution source to a hard drive.
Uncompress the file with the Unix command

uncompress acats26?.tar.Z

(note that particular Unix implementations may have different formats or require specific
qualifiers.) After the ACATS file has been uncompressed, it must be untarred. Move to
the directory where you want the ACATS2_6 directory to be created and then untar each
of the ACATS files

tar -xvf <path>/acats26?.tar

where <path> is the location of the uncompressed tar file.

Please note that these are generic instructions and may need to be customized or modified
for specific systems.

4.2.3 Files With Non-Graphic Characters

Four ACATS test files contain non-graphic (control) characters that may be lost or
corrupted in the file transfer and decompression process. The user must ensure that the
proper characters are restored as necessary. The following paragraphs describe the four
tests.

ACATS 2.6 User's Guide 14 March 2007 31

4.2.3.1 A22006C

This test checks that format effectors can appear at the beginning of a compilation. At the
beginning of the file, the first line is empty (indicated by the system's end-of-line marker,
which may be a sequence of one or more characters or may be indicated by some other
means). The second line contains 20 characters: 6 control characters followed by the
comment delimiter, a space, and the file name (A22006C.ADA). The control characters
are:

 Common Name Ada Name ASCII Value
 Decimal Hex

Carriage return ASCII.CR 13 0D
Carriage return ASCII.CR 13 0D
Vertical tab ASCII.VT 11 0B
Line feed ASCII.LF 10 0A
Line feed ASCII.LF 10 0A
Form feed ASCII.FF 12 0C

4.2.3.2 B25002A

This test checks that control characters (other than format effectors) are not permitted in
character literals. The expected characters are documented in source code comments,
using the customary 2- or 3-letter mnemonics. The 28 characters are used in their ASCII
order, and have ASCII values 0 through 8, 14 through 31, and 127.

4.2.3.3 B25002B

This test checks that the five format effector characters cannot be used in character
literals. There are two groups of code containing the illegal characters; in each group, the
characters appear in the order given below:

 Common Name Ada Name ASCII Value
 Decimal Hex

Horizontal tab ASCII.HT 9 09
Vertical tab ASCII.VT 11 0B
Carriage return ASCII.CR 13 0D
Line feed ASCII.LF 10 0A
Form feed ASCII.FF 12 0C

4.2.3.4 B26005A

This test checks the illegality of using control characters in string literals. Each string
literal (ASCII codes 0 through 31 and 127) is used once, and the uses appear in ASCII

 14 March 2007 ACATS 2.6 User's Guide 32

order. Each use is also documented in a source code comment, which identifies the
character by its common 2- or 3-character mnemonic.

4.3 Tailoring the ACATS Test Suite
There are some files in the delivery that require modification before ACATS 2.6 is ready
for processing by an Ada implementation. Package ImpDef (impdef.a) must be edited to
include values suitable for proper testing of an implementation if the defaults are not
acceptable. ImpDef is a package that is new to the 2.X suite, and all users will have to do
this modification. The macros.dfs file must similarly be edited to include values suitable
for testing. This file is slightly different from previous ACATS suites, so all users will
have to modify it, but most changes can be retained from previous versions. All .tst files
(including package Spprt13 (spprt13s.tst)) must have their macro symbols replaced by
implementation specific values. A body for FcnDecl (fcndecl.ada) must be provided if
necessary. Finally, Package Report (repbody.ada) must be modified if necessary;
previous modifications can generally be carried forward. The required customization is
described in the following sections.

4.3.1 ImpDef Customization

All implementations must customize impdef.a for ACATS 2.6 unless they wish to rely on the
defaults provided. ImpDef must be part of the environment whenever a test that depends on it is
processed. Note that in ACATS 2.6, ImpDef uses child libraries for the Specialized Needs
Annexes. The only ImpDef children that need be modified are those associated with the SNAs
that the implementer intends to test during a conformity assessment.

ACATS tests use the entities in ImpDef to control test execution. Much of the
information in ImpDef relates to the timing of running code; for example, the minimum
time required to allow a task switch may be used by a test as a parameter to a delay
statement. The time to use is obtained as an ImpDef constant.

impdef.a was added as a new feature to ACATS 2.0 suite. It is related to macro.dfs in that
it must be customized with values specific to an implementation and ACATS tests will
rely on these values. ImpDef is different in the following respects:

• Defaults are provided. Some implementations may be able to rely entirely on the default values
and subprograms, so no customization would be necessary.

• Some implementations may choose to provide bodies for one procedure and/or one function.
Bodies so provided must satisfy requirements stated in ImpDef.

• It is not used for macro expansion of tests. Instead, ImpDef must be available at compile time
(i.e., included in the environment) for tests that rely upon it.

ACATS 2.6 User's Guide 14 March 2007 33

There are child packages of ImpDef for each of the Specialized Needs Annexes. An
implementation that uses one or more of the Specialized Needs Annexes in its conformity
assessment must customize the associated ImpDef child packages (or rely on their
defaults) and must set the appropriate Booleans in impdef.a. Specific instructions for
the values required by ImpDef and its children are included in impdef.a, impdefc.a,
impdefd.a, impdefe.a, impdefg.a, and impdefh.a. (Note that impdefc, for example,
refers to Annex C.) A copy of ImpDef is included in Appendix B.

4.3.2 Macro Defs Customization

There was no change to the macro.dfs file from ACATS 2.5 to ACATS 2.6. A version of
macro.dfs that was tailored for ACATS 2.5 should be valid for ACATS 2.6 unless some
implementation characteristics have changed.

Tests in files with the extension ".tst" contain symbols that represent implementation
dependent values. The symbols are identifiers with a initial dollar sign ('$'). Each symbol
must be replaced with an appropriate textual value to make the tests compilable.

 The Macrosub program distributed with the ACATS can automatically perform the
required substitutions. This program reads the replacement values for the symbols from
the file macro.dfs and edits all the ".tst" tests in the suite to make the needed changes. It
writes the resulting, compilable programs into files with the same name as the original
but with the extension .adt. A sample macro.dfs is included with the ACATS, and is
included in Appendix D; it contains descriptions of all the symbols used in the test suite.

Substitutions using the Macrosub program may be made as follows:

1. Edit the file macro.dfs using values appropriate for the implementation. Symbols that use the
value of MAX_IN_LEN are calculated automatically and need not be entered.

2. Create a file called tsttests.dat that includes all of the .tst test file names, and their directory
locations if necessary. A version of this file (without directory information) is supplied.

3. Compile and bind MacroSub.

4. Run MacroSub.

The program will replace all symbols in the .tst files with values from macro.dfs. Test
files with the original test name but the extension .adt will contain the processable tests.
The original .tst files will not be modified.

 14 March 2007 ACATS 2.6 User's Guide 34

4.3.3 Processing for Wide_Character Tests

There are two tests in ACATS 2.6 that require preprocessing. They must be processed with the
Wide Character tool; the macro expander tool will not work with them. Information for these tests
is not included in macro.dfs.

There are two tests in ACATS 2.6 that check an implementation's ability to process
characters drawn from the full set of graphic symbols of ISO 10646 BMP (See [Ada95]
2.1). Since such characters cannot be included in the distribution media in a way that can
reliably be read by an arbitrary implementation, they contain character sequences that
must be replaced by the intended character. A special tool, the WideChr program, which
will automatically perform the required substitutions, has been included with this
distribution.

The affected tests are contained in files with the extension .aw. Each such test contains a
six or eight character sequence of the form

"[ab]"

or

"[abcd]"

Note that double quotes make up part of the special sequence (acting as part of the escape
sequence). The processor will replace the string with a character that is designated by
16#abcd#, where the alphanumeric characters ‘a’, ‘b’, ‘c’, ‘d’, are hexadecimal digits.
Note that the strings to be replaced do not start with ‘$’, and the replacement is synthetic,
not substitution. Therefore, the macro expander tool will not work with these tests.

The WideChr tool takes the designated tests as input. The names of the required tests are
included in the WideChr tool code as constants. It reads path names for the tests from
ImpDef. The tool reads the tests, synthesizes the necessary replacements, and writes the
resulting, compilable programs into files with the same name as the original but with the
extension .a.

Substitutions using the WideChr program may be made as follows:

1. Edit the file impdef.a to indicate the path where the tests are located. This value will be
concatenated with the test name to form the complete name of a file.

2. Compile and bind WideChr.
3. Run WideChr.

The program will replace all special sequences in the .aw files with synthesized
characters. Test files with the original test name but the extension .a, in the same path
location as the original .aw files, will contain the processable tests. The original .aw files
will not be modified.

ACATS 2.6 User's Guide 14 March 2007 35

4.3.4 Package SPPRT13 and Function FcnDecl

Package SPPRT13 declares six constants of type System.Address that are primarily used
by tests of Section 13 features. It is in the file spprt13s.tst. As distributed, the package
uses macro symbols that must be replaced. In most cases, the substitution can be
accomplished by the macro substitution described in the preceding section. If appropriate
literals, constants, or predefined function calls can be used to initialize these constants,
they should be supplied in macro.dfs. Otherwise, the package FCNDECL must be
modified.

The version of SPPRT13 distributed with ACATS 2.6 is slightly different from the
version distributed with ACVC 1.11. A body is not required for this package (and would,
therefore, be illegal in Ada95).

All implementations should verify that package SPPRT13 can be properly customized using the
macro substitution technique. Note that in Ada95, a body for SPPRT13 is illegal.

The specification for package FCNDECL is in the file fcndecl.ada. SPPRT13 depends on
FCNDECL (in a context clause that both "with"s it and "use"s it). As supplied with the
ACATS, FCNDECL is an empty package specification. If appropriate literals, constants,
or predefined function calls cannot be used to customize the constants declared in
SPPRT13, the implementer must declare appropriate functions in the specification of
FCNDECL and provide bodies for them in a package body or with a pragma Import.

Modifications to FCNDECL must receive advance approval from the ACAL (and, if
necessary, the ACAA) before use in a conformity assessment.

4.3.5 Modification of Package REPORT

All executable tests use the Report support package. It contains routines to automate test
result reporting as well as routines designed to prevent optimizers from removing key
sections of test code. The specification of package Report is in the file repspec.ada; the
body is in repbody.ada.

Under some conditions, the body of package Report may need to be modified. For
example, the target system for a cross-compiler may require a simpler I/O package than
the standard package Text_IO. In such a case, it may be necessary to replace the context
clause and the I/O procedure names in the body of Report.

Modifications to Report must receive advance approval from the ACAL (and, if
necessary, the ACAA) before use in a conformity assessment.

 14 March 2007 ACATS 2.6 User's Guide 36

4.3.6 Allowed Test Modifications

Class B tests have one or more errors that implementations must identify. These tests are
structured such that, normally, implementations can report all included errors.
Occasionally, an implementation will fail to find all errors in a B-test because it
encounters a limit (e.g., error cascading, resulting in too many error reports) or is unable
to recover from an error. In such cases, a user may split a single B-test into two or more
tests. The resulting tests must contain all of the errors included in the original test, and
they must adhere as closely as possible to the style and content of the original test. Very
often, the only modification needed is to comment out earlier errors so that later errors
can be identified. In some cases, code insertion will be required. An implementation
must be able to demonstrate that it can detect and report all intended B-test errors.

Splits may also be required in executable tests, if, for example, an implementation
capacity limitations is encountered (e.g., a number of generic instantiations too large for
the implementation). In very exceptional cases, tests may be modified by the addition of
a length clause (to alter the default size of a collection), or by the addition of an
elaboration Pragma (to force an elaboration order).

Tests that use configuration pragmas (see 4.6.5.4) may require modification since the
method of processing configuration pragmas is implementation dependent.

Some tests include foreign language code (Fortran, C, or Cobol). While the features used
should be acceptable to all Fortran, C, and Cobol implementations, respectively, some
implementations may require modification to the non-Ada code. Modifications must, of
course, preserve the input-output semantics of the (foreign language) subprogram;
otherwise, the ACATS test will report a failure.

All splits and modifications must be approved in advance by the ACAL (and, if
necessary, the ACAA) before they are used in a conformity assessment. It is the
responsibility of the user to propose a B-test split that satisfies the intention of the
original test. Modified tests should be named by appending an alphanumeric character to
the name of the original test. When possible, line numbers of the original test should be
preserved in the modification.

All tests must be submitted to the compiler as distributed (and customized, if required). If
a test is executable (class A, C, D, E) and compiles successfully, then it must be run.
Modified tests or split tests may be processed next. Only the results of the modified tests
will be graded.

If the ACAA has issued an ACATS Modification List (see Section 4.2.1), then the
required modifications must be made. The permitted modifications may be made if
desired (or if necessary for the particular implementation).

ACATS 2.6 User's Guide 14 March 2007 37

4.4 Processing the Support Files
After all the files identified in Section 4.3 have been customized as needed and required,
the support files can be processed and the reporting mechanism can be verified.

4.4.1 Support Files

The following files are necessary to many of the ACATS tests. Implementations that
maintain program libraries may wish to compile them into the program library used for
conformity assessment:

repspec.ada repbody.ada
impdef .a impdefc.a (If testing Annex C)
fcndecl .ada impdefd.a (If testing Annex D)
checkf i l .ada impdefe .a (If testing Annex E)
lencheck.ada impdefg.a (If testing Annex G)
enumchek.ada impdefh.a (If testing Annex H)
sppr t13s .adt
 (after macro substitution)
tc touch.ada

(Depending on local requirements and strategy, it may also be convenient to compile all
foundation code into the program library as well.)

4.4.2 "CZ" Acceptance Tests

Four tests having names beginning “CZ” are part of the ACATS suite. Unlike other tests
in the suite, they do not focus on Ada language features. Instead, they are intended
primarily to verify that software needed for the correct execution of the test suite works
as expected and required. They check, for example, to see that package Report and
package TCTouch work correctly.

All CZ tests must execute correctly and exhibit the prescribed behavior for a successful
conformity assessment. CZ tests must be processed and run as the first step of a
conformity assessment to ensure correct operation of the support software.

The acceptance test CZ1101A tests the correct operation of package Report's reporting
facilities, including checks that Not_Applicable and Failed calls are reported properly,
and that premature calls cause failure. Therefore, CZ1101A will print some failure
messages when it is executed. The presence of these messages does not necessarily mean
the test has failed. A listing of the expected output for CZ1101A is included in Appendix
C (times and dates in the actual output will differ).

The acceptance test CZ1102A tests the correct operation of the dynamic value routines in
Report. This test should report "PASSED"; any other result constitutes a test failure.

 14 March 2007 ACATS 2.6 User's Guide 38

The acceptance test CZ1103A ensures the correct operation of procedure Checkfile.
(Some of the executable file I/O tests use a file checking procedure named Checkfile that
determines an implementation's text file characteristics. The source code for this
procedure is in the file checkfil.ada.) CZ1103A checks whether errors in text files are
properly detected, therefore, CZ1103A will print some failure messages when it is
executed. The presence of these messages does not necessarily mean the test has failed.
A listing of the expected output for CZ1103A is included in Appendix C (times and dates
in the actual output will differ).

The acceptance test CZ00004 produces output that verifies the intent of the conformity
assessment. It relies on ImpDef having been correctly updated for the conformity
assessment and produces output identifying the annexes (if any) that will be included as
part of the conformity assessment. This test also checks for the proper operation of the
TCTouch package, includes checks that assertion failures are reported properly, therefore
CZ00004 will print some failure messages when it is executed. The presence of these
messages does not necessarily mean the test has failed. A listing of the expected output
for CZ00004 is included in Appendix C; since this output includes values from the
customization impdef, non-failure lines may vary from those in the expected output.
However, the number of lines and their relative positions may not change.

4.5 Establishing Command Scripts
Users will often find it convenient to run large numbers of ACATS tests with command
scripts. This section discusses some of the issues to be considered in developing a script.

4.5.1 Command Scripts

All compiler options and switches that are appropriate and necessary to run the ACATS
tests must be identified and included in commands that invoke the compiler. The same is
true for the binder or any other post-compilation tools. Any implementation dependent
processing of partitions, configuration pragmas, and strict mode processing must be part
of the scripts for running tests that rely on these features.

A script should compile (only) all class B tests. It should compile and bind all class L
tests; if link errors are not explicitly given, the script should attempt to execute the L
tests. It should compile all class F files. It should compile, bind, and execute all class A,
C, D, and E tests.

4.5.2 Dependencies

A command script must take account of all required dependencies. As noted earlier, some
tests are composed of multiple test files. Also, some tests include foundation code, which
may be used by other tests. If a foundation is not already in the environment, it must be
compiled as part of building the test. All files that are used in a test must be compiled in
the proper order, as indicated by the file name. For implementations that require the

ACATS 2.6 User's Guide 14 March 2007 39

extraction individual compilation units from test files before submission to the compiler,
the individual units must be submitted to the compiler in the same order in which they
appear in the file.

4.6 Processing ACATS Tests
After the ACATS tests and support code has been installed and all required modifications
and preliminary processing have been completed, the suite can be processed by an
implementation. This section describes the tests required for conformity assessment,
required partitioning, how tests may be bundled for efficiency, and certain processing
that may be streamlined. It also describes how the suite has been organized to allow a
user to focus on specific development needs.

4.6.1 Required Tests

An implementation may be tested against the core language only or the core language
plus one or more Specialized Needs Annexes. All core tests (except as noted in 4.6.4)
must be processed with acceptable results for conformity assessment of the core
language. All legacy tests, as well as all newer tests for clauses 2-13 and annexes A and
B are core tests. Conformity assessment including one or more Specialized Needs
Annexes requires that all tests for the annex(es) in question be correctly processed in
addition to all core tests

Tests that are not applicable to an implementation (e.g., because of size limitations) and
tests that report "NOT APPLICABLE" when run by an implementation must nevertheless
be processed and demonstrate appropriate results.

Tests that are withdrawn on the current ACATS Modification List as maintained by the
ACAA need not be processed.

4.6.2 Test Partitions

Unless otherwise directed by the Special Requirements section of a test, all tests are to be
configured and run in a single partition. The method of specifying such a partition is
implementation dependent and not determined by the ACATS. The only tests that must
be run in multiple partitions are those which test Annex E, Distributed Systems.

4.6.3 Bundling Test Programs

In some situations, the usual test processing sequence may require an unacceptable
amount of time. For example, running tests on an embedded target may impose
significant overhead time to download individual tests. In these cases, executable tests
may be bundled into aggregates of multiple tests. A set of bundled tests will have a driver
that calls each test in turn; ACATS tests will then be called procedures rather than main

 14 March 2007 ACATS 2.6 User's Guide 40

procedures. No source changes in the tests are allowed when bundling; that is, the only
allowed change is the method of calling the test.

All bundles must be approved by the ACAL (and, if necessary, the ACAA) to qualify for
a conformity assessment. It is the responsibility of the user to identify the tests to be
bundled and to write a driver for them.

4.6.4 Processing That May be Omitted

A user may streamline processing of the ACATS tests to the greatest degree possible
consistent with complete processing of all tests.

Many Ada95 tests rely on foundation code. A foundation need not be compiled anew
each time a different test uses it. In a processing model based on a program library, it is
reasonable to compile the code into the library only once and allow the binder to use the
processed results for each test that "with"s the foundation.

A user may determine, with ACAL concurrence, that some tests require support that is
impossible for the implementation under test to provide. For example, there are tests that
assume the availability of file I/O whereas some (embedded target) implementations do
not support file I/O. Those tests need not be processed during witness testing; however,
the implementer must demonstrate that they are handled in accordance with the language
standard. This demonstration may be performed before witness testing, in which case it
need not be repeated.

Annex B tests that require foreign language code (Fortran, C, Cobol) to be compiled and
bound with Ada code need not be processed if an implementation does not support a
foreign language interface to the respective language.

Tests for the Specialized Needs Annexes of [Ada95] need not be processed except by
implementations that wish to have Annex results documented. In that case, only the tests
for the annex in question (in addition to all core tests) need be processed. If any tests for
a particular Annex are processed, then all tests for that Annex must be processed. If an
implementation does not support a feature in a Specialized Needs Annex test, then it must
indicate the non-support by rejecting the test at compile time or by raising an appropriate
exception at run time. (See [Ada95] 1.1.3(17).)

No withdrawn test need be processed. Tests classified as Pending New in the current
ACATS Modification List also do not need to be processed. (Pending New tests are new
tests included with the ACATS for review purposes, and are not yet required for
conformity assessment).

ACATS 2.6 User's Guide 14 March 2007 41

4.6.5 Tests with Special Processing Requirement

Some tests may require special handling. These are primarily SNA tests, but some core
tests are affected. For example, distributed processing tests may require an executable
image in multiple partitions, where partitions are constructed in an implementation
specific manner. Real-time processing tests may have configuration pragmas that have to
be handled in an implementation specific way. Numeric Processing tests require strict
mode processing to be selected. Each such test has a Special Requirements section in the
test header describing any implementation specific handling that is required for the test.

A list of all such tests is included in Appendix A.

 14 March 2007 ACATS 2.6 User's Guide 42

4.6.5.1 Foreign Language Interface Tests

Annex B, Interface to Other Languages, is part of the Ada95 core language. Any
implementation that provides one or more of the packages Interfaces.C,
Interfaces.COBOL, or Interfaces.Fortran must correctly process, and pass, the tests for
interfaces to C, Cobol, and/or Fortran code respectively, with the possible exception of
tests containing actual foreign code.

An implementation that provides one or more of these Interfaces child packages must
successfully compile the Ada units of tests with actual foreign language code. If the
implementation does not support the actual binding of the foreign language code to Ada,
these tests may report binding errors, or may reject the pragma Import, in which case they
may be graded as inapplicable. If the implementation supports the binding and an
appropriate compiler is available, the tests must execute and report "Passed". If the
implementation supports the binding, but it is not feasible to have an appropriate
compiler available, then the tests may be graded as inapplicable by demonstrating that
they fail to bind.

If one of the Interfaces child packages is not provided, then the corresponding tests may
be graded as inapplicable, provided they reject the corresponding "with" clause.

The tests involving interfaces to foreign code are listed in the following sections.

The foreign language code included in ACATS tests uses no special or unique features,
and should be accepted by any standard (C, Cobol, or Fortran) compiler. However, there
may be dialect problems that prevent the code from compiling correctly. Modifications to
the foreign language code are allowable; the modifications must follow the code as
supplied as closely as possible and the result must satisfy the requirements stated in the
file header. Such modifications must be approved in advance by the ACAL (and, if
necessary, the ACAA). The method for compiling foreign code is implementation
dependent and not specified as part of the ACATS. Ada code in these tests must be
compiled as usual. The Ada code includes Pragma Import that references the foreign
language code. The link name of foreign language object code must be provided in
ImpDef. When all code has been compiled, the test must be bound (including the foreign
language object code) and run. The method for binding Ada and foreign language code is
implementation dependent and not specified as part of the ACATS. The test must report
“PASSED” when executed.

4.6.5.1.1 C Language Interface
If the implementation provides the package Interfaces.C, the tests identified below must
be satisfactorily processed as described above.

The starred tests contain C code that must be compiled and linked if possible, as
described above. The C code is easily identifiable because the file has the extension “.C”.
The C code may be modified to satisfy dialect requirements of the C compiler. The C
code files must be compiled through a C compiler, and the resulting object code must be

ACATS 2.6 User's Guide 14 March 2007 43

bound with the compiled Ada code. Pragma Import will take the name of the C code from
ImpDef.

CD30005*
CXB3001
CXB3002
CXB3003
CXB3004*

CXB3005
CXB3006*
CXB3007
CXB3008
CXB3009

CXB3010
CXB3011
CXB3012
CXB3013*
CXB3014

CXB3015
CXB3016

4.6.5.1.2 Cobol Language Interface
If the implementation provides the package Interfaces.COBOL, the tests identified below
must be processed satisfactorily, as described above.

The starred test contains Cobol code that must be compiled and linked if possible, as
described above. The Cobol code is easily identifiable because the file has the extension
“.CBL”. The Cobol code may be modified to satisfy dialect requirements of the Cobol
compiler. The Cobol code files must be compiled through a Cobol compiler, and the
resulting object code must be bound with the compiled Ada code. Pragma Import will
take the name of the Cobol code from ImpDef.

CXB4001
CXB4002
CXB4003

CXB4004
CXB4005
CXB4006

CXB4007
CXB4008
CXB4009*

4.6.5.1.3 Fortran Language Interface
If the implementation has a Fortran language interface, the tests identified below must be
processed satisfactorily, as described above.

The starred tests contain Fortran code that must be compiled and linked if possible, as
described above. The Fortran code is easily identifiable because the file has the extension
“.FTN”. The Fortran code may be modified to satisfy dialect requirements of the Fortran
compiler. The Fortran code files must be compiled through a Fortran compiler, and the
resulting object code must be bound with the compiled Ada code. Pragma Import will
take the name of the Fortran code from ImpDef.

CXB5001
CXB5002

CXB5003
CXB5004*

CXB5005*

44 14 March 2007 ACATS 2.6 User's Guide

4.6.5.2 Tests for the Distributed Processing Annex

The ACATS tests for the Distribution Annex are applicable only to implementations that
wish to test this SNA. Not all of these tests apply to all implementations, since the annex
includes some implementation permissions that affect the applicability of some tests.

The principal factors affecting test applicability are:

1. whether the Remote_Call_Interface pragma is supported;

2. whether a Partition Communication System (PCS) is provided (i.e., whether a body for
System.RPC is provided by the implementation);

3. whether the Real-Time Annex is also supported.

An implementation may test for the annex without providing a PCS. In order to test for
the Distribution Annex, an implementation must allow a body for System.RPC to be
compiled.

4.6.5.2.1 Remote_Call_Interface pragma
[Ada95] allows explicit message-based communication between active partitions as an
alternative to RPC [E.2.3(20)]. If an implementation does not support the
Remote_Call_Interface pragma then the following tests are not applicable:

BXE2009
BXE2010
BXE2011
BXE2013

BXE4001
CXE2001
CXE2002
CXE4001

CXE4002
CXE4003
CXE4004
CXE4005

CXE4006
CXE5002
CXE5003
LXE3001

4.6.5.2.2 Partition Communication System
An implementation is not required to provide a PCS [E.5(27)] in order to test the
Distribution Annex. If no PCS is provided then the following tests are not applicable:

CXE1001
CXE2001

CXE4001
CXE4002

CXE4003
CXE4004

CXE4005
CXE4006

4.6.5.2.3 System.RPC
Two tests provide a body for System.RPC. An implementation may include a private part
that includes declarations, such as additional procedures and functions, that impose
additional requirements on System.RPC. If an implementation includes additional
declarations, then the same declarations (and implementations) may be added to the body
of System.RPC in the tests identified below. Declarations in the private part of the
implementation’s System.RPC do not affect the applicability of the tests in this group.

CXE5002 CXE5003

ACATS 2.6 User's Guide 14 March 2007 45

4.6.5.2.4 Real-Time Annex Support
Many implementations that support the Distribution Annex will also support the Real-
Time Annex. Test CXE4003 is designed to take advantage of Real-Time Annex features
in order to better test the Distribution Annex.

For implementations that do not support the Real-Time Annex, test CXE4003 must be
modified. This modification consists of deleting all lines that end with the comment “--
RT”.

4.6.5.2.5 Configuring Multi-Partition Tests
Some Distribution Annex tests require multiple partitions to run the test, but no more
than two partitions are required for running any of them. All multi-partition tests contain
a main procedure for each of the two partitions. The two partitions are referred to as “A”
and “B” and the main procedures for these partitions are named <test_name>_A and
<test_name>_B respectively. Each test contains instructions naming the compilation
units to be included in each partition. Most implementations will be primarily concerned
with the main procedure and RCI packages that are to be assigned to each partition; the
remainder of the partition contents will be determined by the normal dependency rules.
The naming convention used in multi-partition tests aid in making the partition
assignments. If the name of a compilation unit ends in “_A<optional_digit]>” then it
should be assigned to partition A. Compilation units with names ending in
“_B<optional_digit>“ should be assigned to partition B.

The following tests require that two partitions be available to run the test:

CXE1001
CXE2001*
CXE2002
CXE4001

CXE4002
CXE4003
CXE4004
CXE4005

CXE4006
CXE5002
CXE5003
LXE3001

LXE3002*

(*) Tests CXE2001 and LXE3002 contain a Shared_Passive package and two active
partitions. They may be configured with either two or three partitions. The two-partition
configuration must have two active partitions and the Shared_Passive package may be
assigned to either one of the active partitions. The three-partition configuration consists
of two active partitions and a single passive partition, and the passive partition will
contain the single Shared_Passive package.

4.6.5.2.6 Running Multi-Partition Tests
All of the multi-partition tests include the package Report in both of the active partitions.
In order for the test to pass, both partitions must produce a passed message (except for
LXE3002 - see special instructions for that test). If either partition produces a failed
message, or if one or both partitions do not produce a passed message, the test is graded
"failed".

When running the multi-partition tests it is not important which partition is started first.
Generally, partition A acts as a server and partition B is a client, so starting partition A
first is usually best.

 14 March 2007 ACATS 2.6 User's Guide 46

In the event a test fails due to the exception Communication_Error being raised, it is
permissible to rerun the test.

4.6.5.3 Tests for the Numerics Annex

Many of the tests for Annex G, Numerics, must be run in strict mode. The method for
selecting strict mode is implementation dependent and not specified by the ACATS.
(Note that the tests for numerical functions specified in Annex A may, but need not, be
run in strict mode.) The following tests must be run in strict mode:

CXG2003
CXG2004
CXG2006
CXG2007
CXG2008
CXG2009

CXG2010
CXG2011
CXG2012
CXG2013
CXG2014
CXG2015

CXG2016
CXG2017
CXG2018
CXG2019
CXG2020
CXG2021

CXG2022
CXG2023
CXG2024

4.6.5.4 Tests that use Configuration Pragmas

Several of the tests in Annex D, Real Time Processing, Annex E, Distributed Processing,
and Annex H, Safety and Security, use configuration pragmas. The technique for
applying a configuration pragma to a test composed of multiple compilation units is
implementation dependent and not specified by the ACATS. Every implementation that
uses any such test in a conformity assessment must therefore take the appropriate steps,
which may include modifications to the test code and/or post-compilation processing, to
ensure that such a pragma is correctly applied. The following tests require special
processing of the configuration pragma:

BA15001
BXC5001
BXH4001
BXH4002
BXH4003
BXH4004
BXH4005
BXH4006
BXH4007
BXH4008
BXH4009
BXH4010
BXH4011
BXH4012
BXH4013
CXD1004
CXD1005

CXD2001
CXD2002
CXD2003
CXD2004
CXD2005
CXD2006
CXD2007
CXD2008
CXD3001
CXD3002
CXD3003
CXD4001
CXD4003
CXD4004
CXD4005
CXD4006
CXD4007

CXD4008
CXD4009
CXD4010
CXD5002
CXD6002
CXD6003
CXDA003
CXDB005
CXH1001
CXH3001
CXH3003
LXD7001
LXD7003
LXD7004
LXD7005
LXD7006
LXD7007

LXD7008
LXD7009
LXH4001
LXH4002
LXH4003
LXH4004
LXH4005
LXH4006
LXH4007
LXH4008
LXH4009
LXH4010
LXH4011
LXH4012
LXH4013

47 14 March 2007 ACATS 2.6 User's Guide

4.6.6 Focus on Specific Areas

The ACATS test suite is structured to allow compiler developers and testers to use parts
of the suite to focus on specific compiler feature areas.

Both the legacy tests and the newer tests tend to focus on specific language features in
individual tests. The name of the test is generally a good indicator of the primary feature
content of the test, as explained in the discussion of naming conventions. Beware that
legacy test names have not changed, but the Ada Reference Manual organization has
changed from [Ada83] to [Ada95], so some legacy test names point to the wrong clause
of [Ada95]. Further, note that the general style and approach of the newer tests creates
user-oriented test situations by including a variety of features and interactions. Only the
primary test focus can be indicated in the test name.

ACATS 2.6 tests are divided into core tests and Specialized Needs Annex tests. Recall
that annexes A and B are part of the core language. All annex tests (including those for
annexes A and B) have an 'X' as the second character of their name; Specialized Needs
Annex tests have a letter between 'C' and 'H' (inclusive) corresponding to the annex
designation, as the third character of the test name.

4.7 Grading Test Results
Although a single test may examine multiple language issues, ACATS test results are
graded "passed", "failed", or "not applicable" as a whole.

All customized, applicable tests must be processed by an implementation. Results must
be evaluated against the expected results for each class of test. Results that do not
conform to expectations constitute failures. The only exceptions allowed are discussed
above in test splitting and modification; in such cases, processing the approved modified
test(s) must produce the expected behavior. Any differences from the general discussion
of expected results below for executable or non-executable tests are included as explicit
test conditions in test prologues.

Warning or other informational messages do not affect the pass/fail status of tests.

Expected results for executable and non-executable tests are discussed in Sections 4.7.1 -
4.7.3. Tests that are non-applicable for an implementation are discussed in 4.7.4.
Withdrawn tests are discussed in 4.7.5.

4.7.1 Expected results for Executable Tests

Executable tests (classes A, C, D, E) must be processed by the compiler and any post-
compilation steps (e.g., binder, partitioner) without any errors. They must be loaded into
an execution target and run. Normal execution of tests results in an introductory message

 14 March 2007 ACATS 2.6 User's Guide 48

that summarizes the test objective, possibly some informative comments about the test
progress, a final message giving pass / fail status, and graceful, silent termination. They
may report "PASSED", "TENTATIVELY PASSED", "FAILED", OR "NOT
APPLICABLE".

A test that fails to compile and bind, including compiling and binding any foundation
code on which it depends is graded as "failed", unless the test includes features that need
not be supported by all implementations. For example, an implementation may reject the
declaration of a numeric type that it does not support. Allowable cases are clearly stated
in the Applicability Criteria of tests. Annex L of [Ada95] requires implementations to
document such implementation-defined characteristics.

A test that reports "FAILED" is graded as "failed" unless the ACAL, and possibly the
ACAA, determine that the test is not applicable for the implementation.

A test that reports "PASSED" is graded as "passed" unless the test produces the pass
message but fails to terminate gracefully (e.g., crashes, hangs, raises an unexpected
exception, produces an earlier or later "FAILED" message). This kind of aberrant
behavior may occur, for example, in certain tasking tests, where there are multiple
threads of control. A pass status message may be produced by one thread, but another
thread may asynchronously crash or fail to terminate properly.

A test that reports "NOT APPLICABLE" must be run by the implementation and is
graded as "not applicable" unless it produces the not-applicable message and then fails to
terminate gracefully.

A test that reports "TENTATIVELY PASSED" is graded as "passed" if the test results
satisfy the pass/fail criteria in the test. Normally, verification requires manual inspection
of the test output.

A test that fails to report, or produces only a partial report, will be graded as "failed"
unless the ACAL, and possibly the ACAA, determine that the test is not applicable for
the implementation.

4.7.2 Expected Results for Class B

Class B tests are expected to be compiled but are not subject to further processing and are
not intended to be executable. An implementation must correctly report each clearly
marked error (the notation "-- ERROR:" occurs at the right hand side of the source). A
multiple unit B test file generally will have errors only in one compilation unit. Error
messages must provide some means of specifying the location of an error, but they are
not required to be in direct proximity with the "-- ERROR:" marking of the errors.

Some B-tests also include the notation "-- OK" to indicate constructs that must not be
identified as errors. This is especially important since some constructs were errors in
Ada83 that are legal in Ada95.

ACATS 2.6 User's Guide 14 March 2007 49

Note that the error and OK markings may occur in lower or mixed case, as well as upper
case.

Some B-tests exercise constructs whose correctness depends on source code that is
textually separated (e.g., a deferred constant and its full declaration). In these cases, it
may be reasonable to report an error at both locations. Such cases are marked with "--
OPTIONAL ERROR". These lines may be flagged as errors by some, but not all,
implementations. Unless an optional error is marked as an error for the wrong reason, an
error report (or lack of it) does not affect the pass/fail status of the test.

A test is graded as "passed" if it reports each error in the test. The content of error
messages is considered only to determine that they are indeed indications of errors (as
opposed to warnings, e.g.) and that they refer to the expected errors. The Reference
Manual does not specify the form or content of error messages. In particular, a test with
just one expected error is graded as "passed" if the test is rejected at compile time.

A test is graded as "failed" if it fails to report on each error in the test or if it marks legal
code as erroneous.

4.7.3 Expected Results for Class L

Class L tests are expected to be rejected before execution begins. They must be submitted
to the compiler and to the linker/binder. If an executable is generated, then it must be
submitted for execution. Unless otherwise documented, the test is graded as "failed" if it
begins execution, regardless of whether any output is produced.. (Twenty-eight L tests
contain documentation indicating that they may execute. See below.)

In general, an L test is expected to be rejected at link/bind time. Some tests contain
"-- ERROR:" indications; an implementation that reports an error associated with one of
these lines is judged to have passed the test (provided, of course, that the link attempt
fails).

The following tests are exceptions to the general rule that an L test must not execute:

Test LXE3002, for the Distributed Systems Annex, is a test that has two partitions, each of which may
execute. As documented in the source code, this test is graded "failed" if both partitions report
"TENTATIVELY PASSED". Other outcomes are graded as appropriate for Class L tests.
Tests LA14001..27 (twenty-six core language tests), as documented in the source code, may execute if
automatic recompilation is supported. These tests are graded as "passed" if they execute and report
"PASSED". Other outcomes are graded as appropriate for Class L tests.

4.7.4 Inapplicable Tests

Each ACATS test has a test objective that is described in the test prologue. Some
objectives address Ada language features that need not be supported by every Ada
implementation (e.g., "check floating-point operations for digits 18"). These test
programs generally also contain an explicit indication of their applicability and the

 14 March 2007 ACATS 2.6 User's Guide 50

expected behavior of an implementation for which they do not apply. Appendix D of this
user's guide lists common reasons for a test to be inapplicable, and lists the tests affected.

A test may be inapplicable for an implementation given:

• appropriate ACATS grading criteria; or
• an ACAA ruling on a petition to accept a deviation from expected results.

Appropriate grading criteria include:

a. whether a test completes execution and reports "NOT APPLICABLE";
b. whether a test is rejected at compile or bind time for a reason that satisfies grading criteria stated in

the test program.

All applicable test programs must be processed and passed.

4.7.5 Withdrawn Tests

From time to time, the ACAA determines that one or more tests included in a release of
the ACATS should be withdrawn from the test suite. Tests that are withdrawn are not
processed during a conformity assessment and are not considered when grading an
implementation.

Usually, a test is withdrawn because an error has been discovered in it. A withdrawn test
will not be reissued as a modified test, although it may be revised and reissued as a new
test in the future.

Withdrawn tests are listed in the ACATS Modification List, which is maintained by the
ACAA.

ACATS 2.6 User's Guide 14 March 2007 51

4.8 Addressing Problems or Issues
After all tests have been processed and graded, any remaining problems should be
addressed. Test failures must be identified and resolved. This section discusses issues that
are not due to implementation errors (bugs).

4.8.1 Typical Issues

Here are some typical causes of unexpected ACATS test failures (often resulting from
clerical errors):

Processing a test that is withdrawn;
Processing a test that has been modified by the ACAA to correct a test error;
Processing a test that is not applicable to the implementation (as explained in Section
4.7.4;
Processing files (or tests, see Section 4.5.2) in an incorrect order;
Processing tests when units required in the environment are not present.

Test result failures resulting from technical errors may include:

Incorrect values in ImpDef, which provide inappropriate values to tests at run-time;
Incorrect values in macro.dfs, which result in incorrectly customized tests;
Incorrect substitutions in wide_character tests;
Need to modify a test (e.g., split a B-test).

Finally, occasionally a user discovers an error in a new ACATS test. More rarely, errors
are uncovered by compiler advances in tests that are apparently stable. In either case, if
users believe that a test is in error, they may file a dispute with the ACAL. The dispute
process is described in the next section.

4.8.2 Deviation from Expected Results - Petition & Review

Each test indicates in its prologue what it expects from a conforming implementation.
The result of processing a test is acceptable if and only if the result is explicitly allowed
by the grading criteria for the test.

A user may challenge an ACATS test on the grounds of applicability or correctness. A
challenger should submit a petition against the test program to an ACAL or to the
ACAA, following the procedure and the format presented in [Pro01]. A petition must
clearly state whether it is a claim that the test does not apply to the implementation or
that the test is erroneous. The petition must indicate the specific section of code that is
disputed and provide a full explanation of the reason for the dispute.

ACALs will forward petitions from their customers to the ACAA for decisions. The
ACAA will evaluate the petitioner's claims and decide whether

 14 March 2007 ACATS 2.6 User's Guide 52

• the test is applicable to the implementation (i.e., deviation is not allowed);
• the test is not applicable to the implementation (i.e., deviation is allowed);
• the test should be repaired (deviation is allowed, and the modified test should be used for

determining conformity assessment results);
• the test should be withdrawn (deviation is allowed and the test is not considered in

determining conformity assessment results).

A deviation is considered to be a test failure unless a petition to allow the deviation has
been accepted by the ACAA.

4.9 Reprocessing and Regrading
After all problems have been resolved, tests that failed can be reprocessed and regraded.
This step completes the ACATS testing process.

