

 THE

 ADA COMPILER VALIDATION CAPABILITY

 (ACVC)

 VERSION 2.0.1

 TEST OBJECTIVES DOCUMENT

 6 March 1996

 Prepared for:

 Ada 9X Project : ACVC Program

 Prepared by:

 Science Applications International Corporation

 10770 Wateridge Circle

 San Diego, CA 92121

B354001

 Check that the expression of a modular_type_definition must be static and that the expected type of

 the expression can be of any integer type. Check that the modulus must be positive. Check that

 moduli that are powers of two are allowed up to and including, but not exceeding,

 System.Max_Binary_Modulus. Check that non-power-of-two moduli are allowed as long as they do

 not exceed System.Max_Nonbinary_Modulus. Check that the value of a potentially static expression

 of a modular type that appears in a nonstatic context must be within the base range of its expected

 type. Check that the predefined logical operators and membership tests are available.

 B360001

 Check that, within the definition of a nonlimited composite type or a limited composite type that

 becomes nonlimited later in its immediate scope, if a component definition contains the reserved

 word aliased and the type of the component is discriminated, the nominal subtype of the component

 may not be unconstrained.

 B390001

 Check that: Class wide objects are required to be initialized (whether created by object declaration or

 an allocator). Aggregates of a class wide type are required to be qualified with a specific type when

 their expected type is class-wide. Tagged private and tagged limited private require the full type to

 be a tagged record type. The attribute 'Class is not defined for untagged types. The Class attribute is

 defined for untagged private types whose full type is tagged, but only in the private part of the

 package in which the type is declared.

 B391001

 Check that: A discriminant on a tagged type is not allowed to have a default. Private record

 extension is not allowed to be declared immediately within a subprogram declarative region. Record

 extension of a nonlimited type does not allow limited components. A record extension may not be

 declared in a nested package where it is not accessible from the declaration of its parent type. Record

 extension does not allow repeating identifiers used in the parent declaration.

 B391002

 Check that a type extension may not be declared in a generic body if the parent type is declared

 outside that body.

 B392001

 Check that a default_expression for a controlling formal parameter of a dispatching operation may

 not be statically tagged. Check that a controlling formal parameter that is an access parameter may

 not have a default_expression.

 B392002

 Check that a subprogram may not be a dispatching operation for two distinct tagged types (in a

 package).

 B392003

 Check that: A dispatching operation which overrides an inherited subprogram is required to be

 subtype conformant with the inherited subprogram. The declaration of dispatching operations does

 not allow the use of subtypes which do not statically match the first subtype of the tagged type (in a

 package).

 B392004

 Check that: A dynamically tagged value is not allowed in an object or expression for which the

 expected type is a specific tagged value (unless it is a controlling operand on a dispatching

 operation). An access-to-classwide type is not allowed in an expression for which the expected type

 is an anonymous access to specific type (unless it is a controlling operand on a dispatching

 operation). A call on dispatching operation may not have both dynamically tagged and statically

 tagged controlling operands.

 B392005

 Check that a subprogram may not be a dispatching operation for two different tagged types (in a

 child unit package).

 B392006

 Check that a default_expression for a controlling formal parameter of a dispatching operation must

 be tag indeterminate. Specifically, check that it may not be dynamically tagged.

 B392007

 Check that a dispatching operation declared in a child package which overrides an inherited

 subprogram declared in parent is required to be subtype conformant with the inherited subprogram.

 B392008

 Check that a subprogram call through a dereference of an access-to- subprogram value is not

 considered a call on a dispatching operation; therefore, the actual parameter in such a subprogram

 call may not be dynamically tagged. Check for the case where the access-to-subprogram type is a

 generic formal type.

 B392009

 Check that a subprogram call through a dereference of an access-to- subprogram value is not

 considered a call on a dispatching operation; therefore, the actual parameter in such a subprogram

 call may not be dynamically tagged. Check that a designated profile of an access-to-subprogram type

 which contains parameters of a tagged type does not introduce a primitive operation of the tagged

 type.

 B393001

 Check that: Objects and aggregates may not be defined or allocated of an abstract type. The type of

 a component may not be abstract. A function defined with an abstract result type must be declared

 abstract. If an abstract subprogram is defined as a primitive subprogram of a a tagged type, then the

 tagged type must be abstract. The full type of a non-abstract private extension may not be abstract.

 The full type of an abstract private extension may be non-abstract.

 B393002

 Check that incorrect orderings of reserved words in a tagged type declaration are flagged as illegal.

 B393003

 Check that: Bodies are not allowed for abstract subprograms. An abstract subprogram defined using

 a combination of concrete and abstract types remains abstract upon derivation from the concrete

 type. The target of an assignment operation may not be abstract.

 B393004

 Check that the actual subprogram corresponding to a generic formal subprogram must not be

 abstract.

 B393006

 Check that, if a non-abstract type is derived from an abstract formal private type within the generic

 declaration, an instantiation is rejected if the derived type inherits abstract primitive subprograms

 from the actual (parent) type.

 B3A0001

 Check that objects defined to be of a general access type may not designate an object or component

 which is not defined to be aliased. Check that a renaming of an aliased view is also defined to be

 aliased. Check that an array slice may not be aliased. Check that the general access modifiers "all"

 and "constant" are allowed. Check that an object designated by an access-to-constant type object

 cannot be updated through a value of that type. Check that an object designated by a value of an

 access-to-variable type can be both read and updated.

 B3A0003

 Check that a designated object cannot be updated through a value of an access-to-constant type.

 Check for the cases where the access-to- constant type is a generic formal type, or a non-formal type

 declared within a formal package.

 B3A2002

 Check that: 'Access is not defined for non-aliased objects. For X'Access of a general access type A, if A

 is an access-to-constant type, X can be either a constant or a variable. For X'Access of a general

 access type A, if A is an access-to-variable type, X must denote the view of a variable. Check for

 cases where X is a: (a) Formal in parameter of a tagged type. (b) Generic formal in parameter of a

 tagged type. (c) Formal in parameter of a composite type with aliased components. (d) Function

 return value of a composite type with aliased components.

 B3A2003

 Check that, for X'Access of a general access type A, the accessibility level of the view denoted by X

 must not be statically deeper than that of the access type A. Check for cases where X is: (a) a view

 denoted by an object declaration. (b) a view denoted by a component definition. (c) a formal

 parameter of a tagged type.

 B3A2004

 Check that, for X'Access of a general access type A, the accessibility level of the view denoted by X

 must not be statically deeper than that of the access type A. Check for cases where X is: (a) a

 renaming of an aliased view. (b) a dereference of an access-to-object value. (c) a view conversion of an

 aliased view.

 B3A2006

 Check that, for P'Access of an access-to-subprogram type S, the accessibility level of the subprogram

 denoted by P must not be statically deeper than that of S.

 B3A2007

 Check that, for X'Access of a general access type A, the accessibility level of the view denoted by X

 must not be statically deeper than that of A. Check for cases where X'Access occurs in the visible

 part of an instance and X is declared in the instance itself. Check for cases where X is: (a) a view

 defined by an object declaration. (b) a renaming of an aliased view. (c) a view conversion of an aliased

 view.

 B3A2009

 Check that, for P'Access of an access-to-subprogram type S, if the subprogram denoted by P is

 declared within a generic body, S must also be declared within the generic body.

 B3A2010

 Check that, for P'Access of an access-to-subprogram type S, the accessibility level of the subprogram

 denoted by P must not be statically deeper than that of S. Check for cases where P'Access occurs in

 the visible and private part of an instance.

 B460001

 Check that if the target type of a type conversion is a general access type, the accessibility level of

 the operand type must not be statically deeper than that of the target type. Check for cases where

 the operand is: (a) a stand-alone access object. (b) a formal parameter. (c) an access discriminant.

 B641001

 Check that the actual parameter corresponding to a formal parameter of mode in out or out must

 denote a variable; in particular, that it may not be a dereference of an access-to-constant value.

 Check for the cases where the value is of a generic formal access-to-constant type, or of a non-formal

 access-to-constant type declared within a formal package.

 B730001

 Check that: Full type of a tagged private type must be a tagged type. This means that the full type

 must either be declared using a tagged record definition, or else derived from some other tagged

 type, in which case it must include a record_extension_part. Full type of a nonlimited tagged private

 type must be a nonlimited tagged type. Full type of a limited tagged private type must be a limited

 tagged type. A tagged record type must be a limited type if one of its record components is limited.

 A record extension must be extended from a limited parent type if one of its record components is

 limited.

 B730002

 Check that a private extension is limited if its ancestor type is limited. Check that if a partial view is

 nonlimited, the full view must be nonlimited. Check that if a partial view of a tagged type is limited,

 the full view must be limited, but that if a partial view of an untagged type is limited, the full view

 may be either limited or nonlimited. Check that the full view of a private extension must be derived,

 either directly or indirectly, from the ancestor type. Check that the ancestor type of a private

 extension must be a specific type.

 B730003

 Check that if the partial view of a private type is tagged, the full view must be tagged. Check that if

 the partial view of a private type is untagged, the full view may be tagged or untagged, but that if

 the partial view is untagged and the full view is tagged, no derivatives of the partial view are

 allowed within the immediate scope of the partial view. Check that derivatives of the full view are

 allowed.

 B730004

 Check that if a public child is "with"ed by a client, the client does not have visibility into the private

 part of the child's parent. Check that the full view of a private type defined in a parent and extended

 in a child is not visible outside the child.

 B731A01

 Check that the inherited primitive subprograms of a derived type definition are implicitly declared

 at the earliest place within the immediate scope of the type declaration (but after the type

 declaration) where the corresponding declaration from the parent is visible. Check that, within its

 scope, the full view determines which components are visible. Check for the cases where the parent

 is a partial view (tagged private type) declared in a package, and the derived type is declared in: the

 visible part of a public child unit a package nested within the visible part of a public child unit

 B731A02

 Check that the inherited primitive subprograms of a derived type are implicitly declared at the

 earliest place within the immediate scope of the type declaration (but after the type declaration)

 where the corresponding declaration from the parent is visible. Check that, within its scope, the full

 view determines which components are visible. Check for the cases where the parent is a partial

 view (tagged private type) declared in a package, and the derived type is declared in: the visible part

 of a private child unit a package nested within the visible part of a private child unit a non-child

 package, and is further derived from in a child unit a package nested within the visible part of a

 public child unit

 B740001

 Check that a deferred constant may be declared of any type and that, if it is completed by a full

 constant declaration, its completion must occur immediately within the private part of the same

 package. Check that the deferred and full constants must have the same type.

 B840001

 Check that the name in a use type clause must denote a subtype. Check that only the primitive

 operators of the type determined by the subtype mark in a use type clause are use-visible (in

 particular, that the primitive operators of no other type declared in the same package are use-

visible). Check that the scope of a use type clause in the private part of a library unit does not

 include the visible part of any public descendant of that library unit.

 B940001

 Check that a protected_element_declaration within the private part of a protected type must be a

 component_declaration (if it is not a protected_operation_declaration). Specifically: an anonymous

 array is not allowed

 B940002

 Check that a protected_element_declaration within the private part of a protected type must be a

 component_declaration (if it is not a protected_operation_declaration). Specifically: a constant

 component is not allowed a type declaration is not allowed

 B940003

 Check that protected declarations (in a normal procedure) require completion by a protected body

 and vice versa.

 B940004

 Check that protected declarations (in a package) require completion by a protected body and vice

 versa.

 B940005

 Check the visibility of local subprograms and the private parts of protected objects

 B940006

 Check that component declarations are only allowed in the private part of protected objects

 B940007

 Check that component declarations are not allowed in the body of protected objects

 B951001

 Check that the body of a protected function cannot have an internal call to a protected procedure.

 B952001

 Check that the name that denotes the formal parameter of an entry body is not allowed within the

 entry barrier

 B952002

 Check that the body of a protected entry must have an entry barrier. Check that if an entry

 identifier appears at the end of an entry body it repeats the defining identifier of the entry or the

 entry family

 B952003

 Check that, in the body of a protected entry, the entry_index_specification must be enclosed in

 parentheses.

 B954001

 Check for error if requeue is not type conformant with the call or if requeue has parameters. Check

 requeues with/without abort.

 B960001

 Check that an argument to the delay_until_statement must have type Calendar.Time. In particular

 check that the delay_expressions of Duration, Float and Integer are flagged as errors

 BA11001

 Check that in the visible part of a public child, the private declarations of the parent package are not

 visible.

 BA11002

 Check that the private declarations of the parent are not visible for a formal parameter list or result

 type of a public child.

 BA11003

 Check that a child library unit may not have anything other than a library package or generic

 library package as its parent unit. Check that nested units cannot have child units. Check that child

 of a generic package may not be anything other than a generic unit or a renaming of some other child

 of the same generic unit. Check that a child of an instance of a generic package must be an instance

 or a renaming of a library unit.

 BA11004

 Check that a child library subprogram is not primitive subprogram (i.e, is not inherited by types

 derived from a type declared in the parent).

 BA11005

 Check that a parent body cannot declare a homograph of the child when a child unit is included in

 the context clause of the parent body.

 BA11007

 Check that a child library subprogram may not override a user-defined primitive subprogram.

 BA11008

 Check that an instance of a child of a generic package that is not part of a formal package

 declaration and that is a child of an instance of the generic package is not allowed outside the

 declarative region of the generic package itself. Check that an instance of a generic does not inherit

 children from the generic. Check that a child of an instance of a generic package must be an

 instance.

 BA11009

 Check that if the generic being renamed is itself a child of a generic package P, the renaming must

 occur in a place that is within the declarative region of P, which includes the body, the children

 (and descendant ...), and the subunits of P.

 BA11010

 Check that a library unit renaming declaration may not be used to rename a physically nested

 package, a physically nested subprogram, or a subunit.

 BA12001

 Check that the with-clause of a public child of some library unit cannot include a private child of the

 same ancestor.

 BA12002

 Check that the with-clause of a public second level descendant of some library unit cannot include a

 private descendant of the same ancestor.

 BA12003

 Check that the with-clause of the public descendant of a private descendant of a library unit cannot

 include any private descendants of its (immediate) parent.

 BA12004

 Check that a with-clause of a library unit may not include the private child or any descendant of a

 private child of some other library unit.

 BA12005

 Check that the with-clause in the body of a (public or private) descendant of a library unit cannot

 include a private child of a different library unit.

 BA12007

 Check that the rename of a child unit (i.e. a library unit with an expanded name) does not make

 declarations within ancestors of the child visible. Check that a parent unit name (in the defining

 declaration of a child unit) does not designate a renaming declaration.

 BA12008

 Check that a child unit may not be "with"ed using only its simple name. Check that a child unit may

 not be "with"ed using any abbreviated version of its full expanded name (e.g., grandparent.child

 rather than grandparent.parent.child)

 BA13B01

 Check that a separate subprogram declared in a private child unit of a public parent does not have

 visibility into the private part of the package on which its parent depends or the private part of its

 parent's public sibling.

 BA13B02

 Check that a separate subprogram declared in a public child unit of a private parent does not have

 visibility into the private part of the package on which its parent depends or the private part of its

 parent's public sibling.

 BB10001

 Check that separate exception handlers for Constraint_Error and Numeric_Error are not allowed

 within a handled sequence of statements.

 BC30001

 Check that, in the visible part of an instance, legality rules are enforced at compile time of the

 generic instantiation, and not enforced in other parts of the instance. Specifically, check that, for a

 tagged actual type passed to a non-tagged formal private type, a tagged type may not be derived

 from the actual in the visible part of an instance, but may be derived in the private part or body.

 Check that a non-tagged type derived from a tagged parent type in the private part of an instance is

 not treated as tagged outside the instance.

 BC40001

 Check that the type of a generic formal object of mode in must not be limited.

 BC50001

 Check that, for a generic formal derived type, the actual must be in the class rooted at the ancestor

 subtype. Check for scalar, array, and access types.

 BC50002

 Check that, for a generic formal derived type, the actual must be in the class rooted at the ancestor

 subtype. Check for record and tagged types.

 BC51002

 Check that if a generic formal derived subtype is definite, the actual subtype must not be indefinite.

 Check in cases where the formal subtype appears in contexts where an indefinite subtype would be

 legal.

 BC51003

 Check that, for a generic formal derived type with no discriminant part, if the ancestor subtype is

 constrained, the actual subtype must be constrained and must be statically compatible with the

 ancestor. Check for the case where both constraints are static and the actual subtype is defined by a

 subtype declaration.

 BC51004

 Check that, for a generic formal derived type with no discriminant part, if the ancestor subtype is

 constrained, the actual subtype must be constrained and must be statically compatible with the

 ancestor. Check for the case where both constraints are static and the actual subtype is defined by a

 derived type declaration.

 BC51005

 Check that, for a generic formal derived type with no discriminant part, if the ancestor subtype is an

 unconstrained access or record subtype, the actual subtype must be unconstrained.

 BC51006

 Check that, for a generic formal derived type with no discriminant part, if the ancestor subtype is an

 unconstrained array or tagged subtype, the actual subtype must be unconstrained.

 BC51007

 Check that, for a generic formal derived type with no discriminant part, if the ancestor subtype is an

 unconstrained discriminated subtype, the actual type must have the same number of discriminants,

 and each discriminant of the actual must correspond to a discriminant of the ancestor.

 BC51011

 Check that, for a formal private type with a known discriminant part, the subtype of each

 discriminant of the actual type must statically match the subtype of the corresponding discriminant

 of the formal type.

 BC51012

 Check that, if the reserved word "abstract" does not appear in the declaration of a formal derived

 type, the actual type must not be an abstract type. Check that, if the ancestor type is abstract, and

 the formal derived type is not, neither the ancestor type nor its abstract descendants may be passed

 as actuals. Check that, if the formal derived type is abstract, then the following entities that are of

 the formal type are illegal: a component, an object created by an object declaration or an allocator, a

 generic formal object of mode in, the the result type of a non-abstract function.

 BC51013

 Check that, if the reserved word "abstract" does not appear in the declaration of a formal private

 type, the actual type must not be an abstract type. Check that, if the formal private type is abstract,

 then the following entities that are of the formal type are illegal: a component, an object created by

 an object declaration or an allocator, a generic formal object of mode in, the result type of a non-

abstract function.

 BC51015

 Check that if the actual type corresponding to a non-tagged formal private type is tagged, an

 instance is illegal if a (non-tagged) derived type is declared in the visible part. Check that an

 instance is legal if the derived type is declared in the private part or in the body.

 BC51016

 Check that, if the reserved word "abstract" appears in the declaration of a formal private type, the

 reserved word "tagged" must also appear. Check that, if the reserved word "abstract" appears in the

 declaration of a formal derived type, the reserved words "with private" must also appear. Check that

 a tagged type derived from a non-tagged generic formal private or derived type is illegal.

 BC51017

 Check that alternative orderings of reserved words in a formal private type declaration are illegal.

 BC51018

 Check that alternative orderings of reserved words in a formal (tagged) derived type declaration are

 illegal.

 BC51019

 Check that a generic formal derived tagged type is a private extension. Specifically, check that, for a

 generic formal derived type whose ancestor type has a primitive subprogram which is a function with

 a controlling result, the function must be overridden for non-abstract record extensions of the formal

 derived type. Check that the function need not be overridden for record extensions, nor for private

 extensions, although for non-abstract private extensions it must be overridden for the corresponding

 full type.

 BC51020

 Check that, for an abstract generic formal derived type whose ancestor type has an abstract

 primitive subprogram, non-abstract record and private extensions of the formal derived type must

 override the subprogram. Check that abstract record and private extensions need not override the

 subprogram. Check that, for a non-abstract generic formal derived type whose ancestor type has an

 abstract primitive subprogram, record and private extensions of the formal derived type need not

 override the subprogram.

 BC51B01

 Check that if a generic formal private subtype is definite, the actual subtype must not be indefinite,

 even if the formal subtype appears only in contexts where an indefinite subtype would be legal.

 BC51B02

 Check that the ancestor of a formal derived type may not be class- wide. Check that a formal derived

 type may not have a known discriminant part. Check that if a generic formal private or derived

 subtype is indefinite, it must not appear in a context which requires a definite subtype.

 BC51C01

 Check that the actual type passed to an abstract generic formal derived type may be either abstract

 or non-abstract, as may record and private extensions of the formal type. Check that, for a non-

abstract type derived from an abstract formal derived type, all abstract primitive subprograms

 inherited from the actual type must be overridden in the instance.

 BC51C02

 Check that the actual type passed to an abstract generic formal private type may be either abstract

 or non-abstract, as may record and private extensions of the formal type. Check that, for a non-

abstract type derived from an abstract formal private type, all abstract primitive subprograms

 inherited from the actual type must be overridden in the instance.

 BC54001

 Check that if a generic formal access type contains the general access modifier "constant," the actual

 must be an access-to-constant type. Check that if a generic formal access type contains the general

 access modifier "all," the actual must be a general access-to-variable type. Check that if a generic

 formal access type contains no general access modifiers and is not a formal access-to-subprogram

 type, the actual must be a general or pool-specific access-to-variable type. Check that if a generic

 formal access type is a formal access-to-subprogram type, the actual must be an access-to-

subprogram type.

 BC54002

 Check that, for a formal access-to-subprogram subtype, the designated profiles of the formal and

 actual must be mode-conformant. Check that if the calling convention of the formal is not protected,

 the calling convention of the actual must not be protected.

 BC54003

 Check that, for a formal access-to-subprogram subtype, the corresponding parameter and result

 types of the designated profiles of the formal and actual must be the same. Specifically, check for the

 case where the parameters in the profile of the formal type are themselves formal types.

 BC54A01

 Check that, for a formal access-to-subprogram subtype whose profile contains access parameters, the

 designated subtypes of the corresponding access parameters in the formal and actual profiles must

 statically match. Check cases where the designated subtype is an elementary subtype.

 BC54A02

 Check that, for a formal access-to-subprogram subtype whose profile contains access parameters, the

 designated subtypes of the corresponding access parameters in the formal and actual profiles must

 statically match. Check cases where the designated subtype is a composite subtype.

 BC54A03

 Check that, for a formal access-to-subprogram subtype whose profile contains access parameters, the

 designated subtypes of the corresponding access parameters in the formal and actual profiles must

 statically match. Check cases where the designated subtype is a generic formal subtype.

 BC54A04

 Check that, for a formal access-to-object type, the designated subtypes of the formal and actual must

 statically match. Check for the case where the access-to-object type is a general access-to-constant

 type.

 BC54A05

 Check that, for a formal access-to-object type, the designated subtypes of the formal and actual must

 statically match. Check for the case where the access-to-object type is a general access-to-variable

 type.

 BC54A06

 Check that, for a formal access-to-object type, the designated subtypes of the formal and actual must

 statically match. Check for the case where the access-to-object type is a pool-specific access-to-

variable type.

 BC70001

 Check that the actual corresponding to a generic formal package must be an instance of the template

 for the formal package. Check for the case where the formal package is declared in a library- level

 generic package.

 BC70002

 Check that the actual corresponding to a generic formal package must be an instance of the template

 for the formal package. Check for the case where the formal package is declared in a library- level

 generic subprogram.

 BC70003

 Check that the template in a formal package declaration must be a generic package. Check for the

 case where the formal package is declared in a library-level generic package.

 BC70004

 Check that the template in a formal package declaration must be a generic package. Check for the

 case where the formal package is declared in a library-level generic subprogram.

 BC70005

 Check that if a formal package actual part is not (<>), the generic formal part of the template is not

 part of the visible part of the formal package. Check for the case where the formal package is

 declared in a library-level generic package.

 BC70006

 Check that if a formal package actual part is not (<>), the generic formal part of the template is not

 part of the visible part of the formal package. Check for the case where the formal package is

 declared in a library-level generic subprogram.

 BC70007

 Check that an actual instance of a generic formal package is rejected if its actuals do not match the

 corresponding actuals in the formal package actual part. Specifically, check that the following cases

 are illegal: For a formal object of mode IN: The actuals are both static expressions but do not have

 the same value. The actuals are not both static expressions and do not statically denote the same

 constant. The actuals are not both the literal null.

 BC70008

 Check that the actual corresponding to a generic formal package must be an instance of the template

 for the formal package. Check for the case where the formal package is declared in a library- level

 generic subprogram. Check for the case where the actuals have been renamed. Check that a generic

 renaming declaration which renames the template may be used in instantiations of the template.

 BC70009

 Check that an actual instance of a generic formal package is rejected if its actuals do not match the

 corresponding actuals in the formal package actual part. Specifically, check that, for formal

 subprograms and packages, the actuals must statically denote the same entity.

 BC70010

 Check that an actual instance of a generic formal package is rejected if its actuals do not match the

 corresponding actuals in the formal package actual part. Specifically, check that, for formal

 subtypes, the actuals must denote statically matching subtypes.

 BDD2001

 Check that Stream_IO attributes 'Input, 'Output, 'Class'Input, and 'Class'Output cannot be used

 with limited types, including composite types containing limited components.

 BXA8001

 Check that Append_File mode has not been added to package Direct_IO. APPLICABILITY

 CRITERIA: Applicable to all implementations that support Direct_IO operations.

 BXAC001

 Check that a stream is limited and may not be the target of an assignment.

 BXAC002

 Check that the Set_Position procedure and Position function are not predefined in Stream_IO.

 Check that the type File_Offset is not predefined in Stream_IO. Check that the Set_Index

 procedure and Index function are predefined in Stream_IO. Check that the type Positive_Count is

 predefined in Stream_IO. Check that the appropriate parameter types are required for the

 Stream_IO procedure Set_Index.

 BXAC003

 Check that an attempt to use the 'Write or 'Read type attribute values to write or read a Stream_IO

 file is rejected when a stream file object is provided as the parameter, rather than an stream access

 value. Check that the correct type 'Write or 'Read attribute value is required when writing or

 reading data to/from a stream. Check that an attempt to use the 'Write or 'Read type attribute

 values as attributes of an object rather than a type are rejected by the compiler.

 BXAC004

 Check that an attribute reference for the Stream_IO attributes 'Write and 'Read is illegal if the type

 is limited, including task types and composite types containing limited components.

 BXAC005

 Check that Text_IO.File_Type objects cannot be used in conjunction with stream-oriented attributes

 'Write and 'Read. Check that Streams.Stream_IO.File_Type objects cannot be used in Text_IO file

 data transfer operations. Check that stream access objects cannot be used as file object parameters

 of Text_IO.Put and Text_IO.Get procedures. Check that Put and Get are not defined as type

 attributes for use with stream files. Check that the package Stream_Support, which was originally

 defined in the 9X Mapping Specification and Ada 9X ILS, but which has been changed to package

 Streams in AARM;3.0, is not included in the compilation system predefined library. (Note: This

 portion of the objective can be deleted in the future.)

 BXC3001

 Check that pragmas Interrupt_Handler and Attach_Handler are recognized. Check that the handler

 is a parameterless protected procedure; check that the pragmas are allowed only immediately in a

 protected definition. Check that a protected declaration for Interrupt_Handler is library level.

 Check that a protected type declaration for Attach_Handler is library level and that any object

 declaration of that type is library level. Check that Attach_Handler will accept an expression only of

 type Interrupts.Interrupt_ID.

 BXC5001

 Check that pragma Discard_Names may only be declared immediately within a declarative part,

 immediately within a package specification or as a configuration pragma. Check that its parameter,

 if present, may denote only a non-derived enumeration subtype, tagged subtype or an exception.

 BXC6001

 Check that the name referenced in pragmas Atomic and Volatile may only be an object, a non-

inherited component or a full type. Check that the name referenced in Atomic_Components or

 Volatile_Components must be an array type or an object of an anonymous array type.

 BXE2A01

 Check that a Declared Pure library unit can depend only on other Declared Pure library units.

 Specifically, it can not depend on a Shared Passive Unit.

 BXE2A02

 Check that a Declared Pure library unit can depend only on other Declared Pure library units.

 Specifically it can not depend on a Remote Types unit.

 BXE2A03

 Check that a Declared Pure library unit can depend only on other Declared Pure library units.

 Specifically it cannot depend on an Normal unrestricted unit.

 BXE2A04

 Check that a Shared Passive library unit can depend only on other Shared Passive or Declared Pure

 library units. Specifically that it can not depend on a Remote Types library unit.

 BXE2A05

 Check that a Shared Passive library unit can depend only on other Shared Passive library units or

 Declared Pure library units. Specifically that it can not depend on a Normal unrestricted unit.

 BXE2A06

 Check that a Remote Types library unit can depend only on other Remote Types library units,

 Declared Pure library units or Shared Passive library units. Specifically that it cannot depend on a

 Normal unrestricted unit

 BXF1001

 Check that values of 2 and 10 are allowable values for Machine_Radix of a decimal first subtype.

 Check that values other than 2 and 10 are not allowed for Machine_Radix of a decimal first subtype.

 Check that the expression used to define Machine_Radix must be static. Check that the package

 Ada.Decimal is available. Check that 10**(-Max_Scale) is allowed as a decimal type's delta. Check

 that 10**(-Min_Scale) is allowed as a decimal type's delta. Check that Min_Delta and Max_Delta are

 allowed for delta in decimal fixed point definitions. Check that Max_Decimal_Digits is allowed for

 digits in a decimal fixed point definition. Check that a value N larger than Max_Scale is not allowed

 in the expression 10**(-N) as a decimal type's delta. Check that a value N smaller than Min_Scale

 is not allowed in the expression 10**(-N) as a decimal type's delta. Check that neither a value

 smaller than Min_Delta nor a value larger than Max_Delta are allowed for delta in decimal fixed

 point definitions. Check that a value larger than Max_Decimal_Digits is not allowed for digits in a

 decimal fixed point definition.

C340001

 Check that user-defined equality operators are inherited by a derived type except when the derived

 type is a nonlimited record extension. In the latter case, ensure that the primitive equality operation

 of the record extension compares any extended components according to the predefined equality

 operators of the component types. Also check that the parent portion of the extended type is

 compared using the user-defined equality operation of the parent type.

 C340A01

 Check that a tagged type declared in a package specification may be passed as a generic formal

 (tagged) private type to a generic package declaration. Check that the formal type may be extended

 with a record extension in the generic package. Check that, in the instance, the record extension

 inherits the user-defined primitive subprograms of the tagged actual.

 C340A02

 Check that a record extension (declared in a package specification) of a tagged type (declared in a

 different package specification) may be passed as a generic formal (tagged) private type to a generic

 package declaration. Check that the formal type may be further extended with a record extension in

 the generic package. Check that, in the instance, the record extension inherits the user-defined

 primitive subprograms of the tagged actual, including those inherited by the actual from its parent.

 C341A01

 Check that formal parameters of a class-wide type can be passed values of any specific type within

 the class.

 C341A02

 Check that class-wide objects can be reassigned with objects from the same specific type used to

 initialize them.

 C341A03

 Check that an object of one class-wide type can initialize a class-wide object of a different type when

 the operation is embedded in a generic unit.

 C341A04

 Check that class-wide objects can be initialized using allocation.

 C3900010

 Check that a record extension can be declared in the same package as its parent, and that this

 parent may be a tagged record or a record extension. Check that each derivative inherits all user-

 defined primitive subprograms of its parent (including those that its parent inherited), and that it

 may declare its own primitive subprograms. Check that predefined equality operators are defined

 for the root tagged type. Check that type conversion is defined from a type extension to its parent,

 and that this parent itself may be a type extension.

 C3900011

 Check that a record extension can be declared in the same package as its parent, and that this

 parent may be a tagged record or a record extension. Check that each derivative inherits all user-

 defined primitive subprograms of its parent (including those that its parent inherited), and that it

 may declare its own primitive subprograms. Check that predefined equality operators are defined

 for the root tagged type. Check that type conversion is defined from a type extension to its parent,

 and that this parent itself may be a type extension.

 C390002

 Check that a tagged base type may be declared, and derived from in simple, private and extended

 forms. (Overlaps with C390B04) Check that the package Ada.Tags is present and correctly

 implemented. Check for the correct operation of Expanded_Name, External_Tag and Internal_Tag

 within that package. Check that the exception Tag_Error is correctly raised on calling Internal_Tag

 with bad input.

 C390003

 Check that for a subtype S of a tagged type T, S'Class denotes a class-wide subtype. Check that

 T'Tag denotes the tag of the type T, and that, for a class-wide tagged type X, X'Tag denotes the tag of

 X. Check that the tags of stand alone objects, record and array components, aggregates, and formal

 parameters identify their type. Check that the tag of a value of a formal parameter is that of the

 actual parameter, even if the actual is passed by a view conversion.

 C390004

 Check that the tags of allocated objects correctly identify the type of the allocated object. Check that

 the tag corresponds correctly to the value resulting from both normal and view conversion. Check

 that the tags of accessed values designating aliased objects correctly identify the type of the object.

 Check that the tag of a function result correctly evaluates. Check this for class-wide functions. The

 tag of a class-wide function result should be the tag appropriate to the actual value returned, not the

 tag of the ancestor type.

 C3900050

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a private extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C3900051

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a private extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C3900052

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a private extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C3900053

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a private extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C3900060

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a record extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C3900061

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a record extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C3900062

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a record extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C3900063

 Check that a private tagged type declared in a package specification may be extended with a private

 extension in a different package specification, and that this private extension may in turn be

 extended by a record extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that type conversion is defined from a type extension to its parent, and that

 this parent itself may be a type extension.

 C390A010

 Check that a nonprivate tagged type declared in a package specification may be extended with a

 record extension in a different package specification, and that this record extension may in turn be

 extended by a record extension. Check that each derivative inherits the user-defined primitive

 subprograms of its parent (including those that its parent inherited), that it may override these

 inherited primitive subprograms, and that it may also declare its own primitive subprograms.

 Check that predefined equality operators are defined for the tagged type and its derivatives. Check

 that type conversion is defined from a type extension to its parent, and that this parent itself may be

 a type extension.

 C390A011

 Check that a nonprivate tagged type declared in a package specification may be extended with a

 record extension in a different package specification, and that this record extension may in turn be

 extended by a record extension. Check that each derivative inherits the user-defined primitive

 subprograms of its parent (including those that its parent inherited), that it may override these

 inherited primitive subprograms, and that it may also declare its own primitive subprograms.

 Check that predefined equality operators are defined for the tagged type and its derivatives. Check

 that type conversion is defined from a type extension to its parent, and that this parent itself may be

 a type extension.

 C390A020

 Check that a nonprivate tagged type declared in a package specification may be extended with a

 record extension in a different package specification, and that this record extension may in turn be

 extended by a private extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that predefined equality operators are defined for the tagged type and its

 derivatives. Check that type conversion is defined from a type extension to its parent, and that this

 parent itself may be a type extension.

 C390A021

 Check that a nonprivate tagged type declared in a package specification may be extended with a

 record extension in a different package specification, and that this record extension may in turn be

 extended by a private extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that predefined equality operators are defined for the tagged type and its

 derivatives. Check that type conversion is defined from a type extension to its parent, and that this

 parent itself may be a type extension.

 C390A022

 Check that a nonprivate tagged type declared in a package specification may be extended with a

 record extension in a different package specification, and that this record extension may in turn be

 extended by a private extension in a third package. Check that each derivative inherits the user-

defined primitive subprograms of its parent (including those that its parent inherited), that it may

 override these inherited primitive subprograms, and that it may also declare its own primitive

 subprograms. Check that predefined equality operators are defined for the tagged type and its

 derivatives. Check that type conversion is defined from a type extension to its parent, and that this

 parent itself may be a type extension.

 C390A030

 Check that a nonprivate tagged type declared in a package specification may be extended with a

 private extension in a different package specification, and that this private extension may in turn be

 extended by a private extension. Check that each derivative inherits the user-defined primitive

 subprograms of its parent (including those that its parent inherited), that it may override these

 inherited primitive subprograms, and that it may also declare its own primitive subprograms.

 Check that predefined equality operators are defined for the tagged type and its derivatives. Check

 that type conversion is defined from a type extension to its parent, and that this parent itself may be

 a type extension.

 C390A031

 Check that a nonprivate tagged type declared in a package specification may be extended with a

 private extension in a different package specification, and that this private extension may in turn be

 extended by a private extension. Check that each derivative inherits the user-defined primitive

 subprograms of its parent (including those that its parent inherited), that it may override these

 inherited primitive subprograms, and that it may also declare its own primitive subprograms.

 Check that predefined equality operators are defined for the tagged type and its derivatives. Check

 that type conversion is defined from a type extension to its parent, and that this parent itself may be

 a type extension.

 C391001

 Check that structures nesting discriminated records as components in record extension are correctly

 supported. Check for this using limited private structures. Check that record extensions inherit all

 the visible components of their ancestor types. Check that discriminants are correctly inherited.

 C391002

 Check that structures nesting discriminated records as components in record extension are correctly

 supported. Check that record extensions inherit all the visible components of their ancestor types.

 Check that discriminants are correctly inherited.

 C3920020

 Check that the use of a class-wide formal parameter allows for the proper dispatching of objects to

 the appropriate implementation of a primitive operation. Check this in the case where the root

 tagged type is defined in a generic package, and the type derived from it is defined in that same

 generic package.

 C3920021

 Check that the use of a class-wide formal parameter allows for the proper dispatching of objects to

 the appropriate implementation of a primitive operation. Check this in the case where the root

 tagged type is defined in a generic package, and the type derived from it is defined in that same

 generic package.

 C392003

 Check that the use of a class-wide formal parameter allows for the proper dispatching of objects to

 the appropriate implementation of a primitive operation. Check this where the root tagged type is

 defined in a package, and the extended type is defined in a nested package.

 C392004

 Check that subprograms inherited from tagged derivations, which are subsequently redefined for the

 derived type, are available to the package defining the new class via view conversion. Check that

 operations performed on objects using view conversion do not affect the extended fields. Check that

 visible operations not masked by the deriving package remain available to the client, and do not

 affect the extended fields.

 C392005

 Check that, for an implicitly declared dispatching operation that is overridden, the body executed is

 the body for the overriding subprogram, even if the overriding occurs in a private part. Check for the

 case where the overriding operations are declared in a public child unit of the package declaring the

 parent type, and the descendant type is a private extension. Check for both dispatching and

 nondispatching calls.

 C392008

 Check that the use of a class-wide formal parameter allows for the proper dispatching of objects to

 the appropriate implementation of a primitive operation. Check this for the case where the root

 tagged type is defined in a package and the extended type is defined in a dependent package.

 C392A01

 Check that the use of a class-wide formal parameter allows for the proper dispatching of objects to

 the appropriate implementation of a primitive operation. Check this for the root tagged type

 defined in a package, and the extended type is defined in that same package.

 C392C05

 Check that for a call to a dispatching subprogram the subprogram body which is executed is

 determined by the controlling tag for the case where the call has statically tagged controlling

 operands of the type T. Check this for various operands of tagged types: objects (declared or

 allocated), formal parameters, view conversions, function calls (both primitive and non-primitive).

 C392C07

 Check that for a call to a dispatching subprogram the subprogram body which is executed is

 determined by the controlling tag for the case where the call has dynamic tagged controlling

 operands of the type T. Check for calls to these same subprograms where the operands are of

 specific statically tagged types: objects (declared or allocated), formal parameters, view conversions,

 and function calls (both primitive and non-primitive).

 C392D01

 Check that, for an implicitly declared dispatching operation that is overridden, the body executed is

 the body for the overriding subprogram, even if the overriding occurs in a private part. Check that,

 for an implicitly declared dispatching operation that is NOT overridden, the body executed is the

 body of the corresponding subprogram of the parent type. Check for the case where the overriding

 (and non-overriding) operations are declared for a private extension (and its full type) in a public

 child unit of the package declaring the ancestor type, and the ancestor type is a tagged private type

 whose full view is itself a derived type.

 C392D02

 Check that a primitive procedure declared in a private part is not overridden by a procedure

 explicitly declared at a place where the primitive procedure in question is not visible. Check for the

 case where the non-overriding operation is declared in a separate (non-child) package from that

 declaring the parent type, and the descendant type is a record extension.

 C392D03

 Check that, for an inherited dispatching operation that is overridden, the body executed is the body

 of the overriding subprogram, even if the overriding occurs in a private part. Check for the case

 where the overriding operation is declared in a separate (non-child) package from that declaring the

 parent type, and the descendant type is a record extension. Check for both dispatching and

 nondispatching calls.

 C393001

 Check that an abstract type can be declared, and in turn concrete types can be derived from it.

 Check that the definition of actual subprograms associated with the derived types dispatch

 correctly.

 C393007

 Check that an extended type can be derived from an abstract type, where the abstract type is defined

 in a package, and the type derived from it is defined in a distinct library package.

 C393008

 Check that an extended type can be derived from an abstract type.

 C393009

 Check that an extended type can be derived from an abstract type.

 C393011

 Check that an abstract extended type can be derived from an abstract type, and that a a non-

abstract type may then be derived from the second abstract type.

 C393012

 Check that a non-abstract subprogram of an abstract type can be called with a controlling operand

 that is a type conversion to the abstract type. Check that converting to the class-wide type of an

 abstract type inside an operation of that type causes a "redispatch" of the called operation.

 C393A02

 Check that a dispatching call to an abstract subprogram invokes the correct subprogram body of a

 descendant type according to the controlling tag. Check that a subprogram can be declared with

 formal parameters and result that are of an abstract type's associated class-wide type and that such

 subprograms can be called. 3.4.1(4)

 C393A03

 Check that a non-abstract primitive subprogram of an abstract type can be called as a dispatching

 operation and that the body of this subprogram can make a dispatching call to an abstract operation

 of the corresponding abstract type.

 C393A05

 Check that for a nonabstract private extension, any inherited abstract subprograms can be

 overridden in the private part of the immediately enclosing package and that calls can be made to

 private dispatching operations.

 C393A06

 Check that a type that inherits abstract operations but overrides each of these operations is not

 required to be abstract, and that objects of the type and its class-wide type may be declared and

 passed in calls to the overriding subprograms.

 C393B12

 Check that an extended type can be derived in the specification of a generic package when the parent

 is an abstract type in a library package.

 C393B13

 Check that an extended type can be derived from an abstract type when that derivation is declared

 in a child package.

 C393B14

 Check that an extended type can be derived in a private child package from an abstract type defined

 in a library package.

 C3A0001

 Check that access to subprogram type can be used to select and invoke functions with appropriate

 arguments dynamically.

 C3A0002

 Check that access to subprogram type can be used to select and invoke procedures with appropriate

 arguments dynamically.

 C3A0003

 Check that a function in a generic instance can be called using an access-to-subprogram value.

 C3A0004

 Check that access to subprogram may be stored within array objects, and that the access to

 subprogram can subsequently be called.

 C3A0005

 Check that access to subprogram may be stored within record objects, and that the access to

 subprogram can subsequently be called.

 C3A0006

 Check that access to subprogram may be stored within data structures, and that the access to

 subprogram can subsequently be called.

 C3A0007

 Check that a call to a subprogram via an access-to-subprogram value stored in a data structure will

 correctly dispatch according to the tag of the class-wide parameter passed via that call.

 C3A0008

 Check that subprogram references may be passed as parameters using access-to-subprogram types.

 Check that the passed subprograms may be invoked from within the called subprogram.

 C3A0009

 Check that subprogram references may be passed as parameters using access-to-subprogram types.

 Check that the passed subprograms may be invoked from within the called subprogram.

 C3A0010

 Check that an access-to-subprogram type in a generic instance may be used to declare access-to-

subprogram objects which invoke subprograms in the instance.

 C3A0011

 Check that an access-to-subprogram object whose type is declared in a parent package, may be used

 to invoke subprograms in a child package. Check that such access objects may be stored in a data

 structure and that subprograms may be called by walking the data structure.

 C3A00120

 See file C3A00122.AM

 C3A00121

 See file C3A00122.AM

 C3A00122

 Check that an access-to-subprogram object can be used to invoke a subprogram when the

 subprogram body had been declared and implemented as a subunit.

 C3A0013

 Check that a general access type object may reference allocated pool objects as well as aliased

 objects. (3,4) Check that formal parameters of tagged types are implicitly defined as aliased; check

 that the 'Access of these formal parameters designates the correct object with the correct tag. (5)

 Check that the current instance of a limited type is defined as aliased. (5)

 C3A0014

 Check that if the view defined by an object declaration is aliased, and the type of the object has

 discriminants, then the object is constrained by its initial value even if its nominal subtype is

 unconstrained. Check that the attribute A'Constrained returns True if A is a formal out or in out

 parameter, or dereference thereof, and A denotes an aliased view of an object.

 C3A2001

 Check that an access type may be defined to designate the class-wide type of an abstract type.

 Check that the access type may then be used subsequently with types derived from the abstract type.

 Check that dispatching operations dispatch correctly, when called using values designated by objects

 of the access type.

 C3A2002

 Check that, for X'Access of a general access type A, Program_Error is raised if the accessibility level

 of X is deeper than that of A. Check for the case where X denotes a view that is a dereference of an

 access parameter, or a rename thereof. Check for cases where the actual corresponding to X is: (a)

 An allocator. (b) An expression of a named access type. (c) Obj'Access.

 C3A2003

 Check that, for X'Access of a general access type A, Program_Error is raised if the accessibility level

 of X is deeper than that of A. Check for the case where X denotes a view that is a dereference of an

 access parameter, or a rename thereof. Check for the case where X is an access parameter and the

 corresponding actual is another access parameter.

 C431001

 Check that a record aggregate can be given for a nonprivate, nonlimited record extension and that

 the tag of the aggregate values are initialized to the tag of the record extension.

 C432001

 Check that extension aggregates may be used to specify values for types that are record extensions.

 Check that the type of the ancestor expression may be any nonlimited type that is a record

 extension, including private types and private extensions. Check that the type for the aggregate is

 derived from the type of the ancestor expression.

 C432002

 Check that if an extension aggregate specifies a value for a record extension and the ancestor

 expression has discriminants that are inherited by the record extension, then a check is made that

 each discriminant has the value specified. Check that if an extension aggregate specifies a value for

 a record extension and the ancestor expression has discriminants that are not inherited by the

 record extension, then a check is made that each such discriminant has the value specified for the

 corresponding discriminant. Check that the corresponding discriminant value may be specified in

 the record component association list or in the derived type definition for an ancestor. Check the

 case of ancestors that are several generations removed. Check the case where the value of the

 discriminant(s) in question is supplied several generations removed. Check the case of multiple

 discriminants. Check that Constraint_Error is raised if the check fails.

 C432003

 Check that if the type of the ancestor part of an extension aggregate has discriminants that are not

 inherited by the type of the aggregate, and the ancestor part is a subtype mark that denotes a

 constrained subtype, Constraint_Error is raised if: 1) any discriminant of the ancestor has a different

 value than that specified for a corresponding discriminant in the derived type definition for some

 ancestor of the type of the aggregate, or 2) the value for the discriminant in the record association

 list is not the value of the corresponding discriminant. Check that the components of the value of

 the aggregate not given by the record component association list are initialized by default as for an

 object of the ancestor type.

 C432004

 Check that the type of an extension aggregate may be derived from the type of the ancestor part

 through multiple record extensions. Check for ancestor parts that are subtype marks. Check that the

 type of the ancestor part may be abstract.

 C452001

 For a type extension, check that predefined equality is defined in terms of the primitive equals

 operator of the parent type and any tagged components of the extension part. For other composite

 types, check that the primitive equality operator of any matching tagged components is used to

 determine equality of the enclosing type. For private types, check that predefined equality is defined

 in terms of the user-defined (primitive) operator of the full type if the full type is tagged. The partial

 view of the type may be tagged or untagged. Check that predefined equality for a private type whose

 full view is untagged is defined in terms of the predefined equality operator of its full type.

 C460001

 Check that if the target type of a type conversion is a general access type, Program_Error is raised if

 the accessibility level of the operand type is deeper than that of the target type. Check for the case

 where the operand is an access parameter. Check for cases where the actual corresponding to the

 access parameter is: (a) An allocator. (b) An expression of a named access type. (c) Obj'Access.

 C460002

 Check that if the target type of a type conversion is a general access type, Program_Error is raised if

 the accessibility level of the operand type is deeper than that of the target type. Check for the case

 where the operand is an access parameter, and the actual corresponding to the access parameter is

 another access parameter.

 C640001

 Check that the prefix of a subprogram call with an actual parameter part may be an implicit

 dereference of an access-to-subprogram value. Check that, for an access-to-subprogram type whose

 designated profile contains parameters of a tagged generic formal type, an access-to- subprogram

 value may designate dispatching and non-dispatching operations, and that dereferences of such a

 value call the appropriate subprogram.

 C730001

 Check that the full view of a private extension may be derived indirectly from the ancestor type (i.e.,

 the parent type of the full type may be any descendant of the ancestor type). Check that, for a

 primitive subprogram of the private extension that is inherited from the ancestor type and not

 overridden, the formal parameter names and default expressions come from the corresponding

 primitive subprogram of the ancestor type, while the body comes from that of the parent type. Check

 both dispatching and non-dispatching cases.

 C730002

 Check that the full view of a private extension may be derived indirectly from the ancestor type (i.e.,

 the parent type of the full type may be any descendant of the ancestor type). Check that, for a

 primitive subprogram of the private extension that is inherited from the ancestor type and not

 overridden, the formal parameter names and default expressions come from the corresponding

 primitive subprogram of the ancestor type, while the body comes from that of the parent type. Check

 for a case where the parent type is derived from the ancestor type through a series of types produced

 by generic instantiations. Examine both the static and dynamic binding cases.

 C730003

 Check that the characteristics of a type derived from a private extension (outside the scope of the full

 view) are those defined by the partial view of the private extension. In particular, check that a

 component of the derived type may be explicitly declared with the same name as a component

 declared for the full view of the private extension. Check that a component defined in the private

 extension of a type may be updated through a view conversion of a type derived from the type.

 C730A01

 Check that a tagged type declared in a package specification may be passed as a generic formal

 (tagged) private type to a generic package declaration. Check that the formal type may be extended

 with a private extension in the generic package. Check that, in the instance, the private extension

 inherits the user-defined primitive subprograms of the tagged actual.

 C730A02

 Check that a private extension (declared in a package specification) of a tagged type (declared in a

 different package specification) may be passed as a generic formal (tagged) private type to a generic

 package declaration. Check that the formal type may be further extended with a private extension in

 the generic package. Check that the (visible) components inherited by the "generic" extension are

 visible outside the generic package. Check that, in the instance, the private extension inherits the

 user-defined primitive subprograms of the tagged actual, including those inherited by the actual

 from its parent.

 C760001

 Check that Initialize is called for objects and components of a controlled type when the objects and

 components are not assigned explicit initial values. Check this for "simple" controlled objects,

 controlled record components and arrays with controlled components. Check that if an explicit

 initial value is assigned to an object or component of a controlled type then Initialize is not called.

 C760002

 Check that assignment to an object of a (non-limited) controlled type causes the Adjust operation of

 the type to be called. Check that Adjust is called after copying the value of the source expression to

 the target object. Check that Adjust is called for all controlled components when the containing

 object is assigned. (Test this for the cases where the type of the containing object is controlled and

 noncontrolled; test this for initialization as well as assignment statements.) Check that for an object

 of a controlled type with controlled components, Adjust for each of the components is called before

 the containing object is adjusted. Check that an Adjust procedure for a Limited_Controlled type is

 not called by the implementation.

 C760007

 Check that Adjust is called for the execution of a return statement for a function returning a result

 of a (non-limited) controlled type. Check that Adjust is called when evaluating an aggregate

 component association for a controlled component. Check that Adjust is called for the assignment of

 the ancestor expression of an extension aggregate when the type of the aggregate is controlled.

 C761001

 Check that controlled objects declared immediately within a library package are finalized following

 the completion of the environment task (and prior to termination of the program).

 C761002

 Check that objects of a controlled type that are created by an allocator are finalized at the

 appropriate time. In particular, check that such objects are not finalized due to completion of the

 master in which they were allocated if the corresponding access type is declared outside of that

 master. Check that Unchecked_Deallocation of a controlled object causes finalization of that object.

 C761003

 Check that an object of a controlled type is finalized when the enclosing master is complete. Check

 this for controlled types where the derived type has a discriminant. Check this for subprograms of

 abstract types derived from the types in Ada.Finalization. Check that finalization of controlled

 objects is performed in the correct order. In particular, check that if multiple objects of controlled

 types are declared immediately within the same declarative part then type are finalized in the

 reverse order of their creation.

 C761004

 Check that an object of a controlled type is finalized with the enclosing master is complete. Check

 that finalization occurs in the case where the master is left by a transfer of control. Specifically check

 for types where the derived types do not have discriminants. Check that finalization of controlled

 objects is performed in the correct order. In particular, check that if multiple objects of controlled

 types are declared immediately within the same declarative part then they are finalized in the

 reverse order of their creation.

 C761005

 Check that deriving abstract types from the types in Ada.Finalization does not negatively impact the

 implicit operations. Check that an object of a controlled type is finalized when the enclosing master

 is complete. Check that finalization occurs in the case where the master is left by a transfer of

 control. Check this for controlled types where the derived type has a discriminant. Check this for

 cases where the type is defined as private, and the full type is derived from the types in

 Ada.Finalization. Check that finalization of controlled objects is performed in the correct order. In

 particular, check that if multiple objects of controlled types are declared immediately within the

 same declarative part then type are finalized in the reverse order of their creation.

 C840001

 Check that, for the type determined by the subtype mark of a use type clause, the declaration of each

 primitive operator is use-visible within the scope of the clause, even if explicit operators with the

 same names as the type's operators are declared for the subtype. Check that a call to such an

 operator executes the body of the type's operation.

 C854001

 Check that a subprogram declaration can be completed by a subprogram renaming declaration. In

 particular, check that such a renaming-as-body can be given in a package body to complete a

 subprogram declared in the package specification. Check that calls to the subprogram invoke the

 body of the renamed subprogram. Check that a renaming allows a copy of an inherited or predefined

 subprogram before overriding it later. Check that renaming a dispatching operation calls the

 correct body in case of overriding.

 C910001

 Check that tasks may have discriminants. Specifically, check where the subtype of the discriminant

 is a discrete subtype and where it is an access subtype. Check the case where the default values of

 the discriminants are used.

 C940001

 Check that a protected object provides coodinated access to shared data. Check that it can be used to

 sequence a number of tasks. Use the protected object to control a single token for which three tasks

 compete. Check that only one task is running at a time and that all tasks get a chance to run

 sometime.

 C940002

 Check that a protected object provides coordinated access to shared data. Check that it can

 implement a semaphore-like construct using a parameterless procedure which allows a specific

 maximum number of tasks to run and excludes all others

 C940005

 Check that the body of a protected function can have internal calls to other protected functions and

 that the body of a protected procedure can have internal calls to protected procedures and to

 protected functions.

 C940006

 Check that the body of a protected function can have external calls to other protected functions and

 that the body of a protected procedure can have external calls to protected procedures and to

 protected functions.

 C940007

 Check that the body of a protected function declared as an object of a given type can have internal

 calls to other protected functions and that a protected procedure in such an object can have internal

 calls to protected procedures and to protected functions.

 C940010

 Check that if an exception is raised during the execution of an entry body it is propagated back to

 the caller

 C940011

 Check that, in the body of a protected object created by the execution of an allocator, external calls to

 other protected objects via the access type are correctly performed

 C940012

 Check that a protected object can have discriminants

 C940013

 Check that items queued on a protected entry are handled FIFO and that the 'count attribute of

 that entry reflects the length of the queue.

 C940A03

 Check that a protected object provides coordinated access to shared data. Check that it can

 implement a semaphore-like construct controlling access to shared data through procedure

 parameters to allow a specific maximum number of tasks to run and exclude all others.

 C951001

 Check that two procedures in a protected object will not be executed concurrently.

 C951002

 Check that an entry and a procedure within the same protected object will not be executed

 simultaneously.

 C954001

 Check that a requeue statement within an entry_body with parameters may requeue the entry call

 to a protected entry with a subtype- conformant parameter profile. Check that, if the call is queued

 on the new entry's queue, the original caller remains blocked after the requeue, but the entry_body

 containing the requeue is completed.

 C954010

 Check that a requeue within an accept statement does not block. This test uses: Requeue to an entry

 in a different task Parameterless call Requeue with abort

 C954011

 Check that a requeue is placed on the correct entry; that the original caller waits for the completion

 of the requeued rendezvous; that the original caller continues after the rendezvous. Specifically, this

 test checks requeue to an entry in a different task, requeue where the entry has parameters, and

 requeue with abort.

 C954012

 Check a requeue within an accept body to another entry in the same task Specifically, check a call

 with parameters and a requeue with abort.

 C954013

 Check that a requeue is cancelled and that the requeuing task is unaffected when the calling task is

 aborted. Specifically, check requeue to an entry in a different task, requeue where the entry has

 parameters, and requeue with abort.

 C954014

 Check that a requeue is not canceled and that the requeueing task is unaffected when a calling task

 is aborted. Check that the abort is deferred until the entry call is complete. Specifically, check

 requeue to an entry in a different task, requeue where the entry call has parameters, and requeue

 without the abort option.

 C954015

 Check that requeued calls to task entries may, in turn, be requeued. Check that the intermediate

 requeues are not blocked and that the original caller remains blocked until the last requeue is

 complete. This test uses: Call with parameters Requeue with abort

 C954016

 Check that when a task that is called by a requeue is aborted, the original caller receives

 Tasking_Error and the requeuing task is unaffected.

 C954017

 Check that when an exception is raised in the rendezvous of a task that was called by a requeue the

 exception is propagated to the original caller and that the requeuing task is unaffected.

 C954018

 Check that if a task is aborted while a requeued call is queued on one of its entries the original

 caller receives Tasking_Error and the requeuing task is unaffected. This test uses: Requeue to an

 entry in a different task Parameterless call Requeue with abort

 C954019

 Check that when a requeue is to the same entry the items go to the right queue and that they are

 placed back on the end of the queue.

 C954020

 Check that a call to a protected entry can be requeued to a task entry. Check that the requeue is

 placed on the correct entry; that the original caller waits for the completion of the requeue and

 continues after the requeued rendezvous. Check that the requeue does not block. Specifically, check

 a requeue with abort from a protected entry to an entry in a task.

 C954021

 Check that a requeue within a protected entry to an entry in a different protected object is queued

 correctly.

 C954022

 In an entry body requeue the call to the same entry. Check that the items go to the right queue and

 that they are placed back on the end of the queue

 C954023

 Check that a requeue within a protected entry to a family of entries in a different protected object is

 queued correctly Call with parameters Requeue with abort

 C954024

 Check that a call to a protected entry can be requeued to a task entry. Check that the requeue is

 placed on the correct entry; that the original caller waits for the completion of the requeue and

 continues after the requeued rendezvous. Check that the requeue does not block. Specifically, check

 a requeue without abort from a protected entry to an entry in a task.

 C954A01

 Check that if a task requeued without abort on a protected entry queue is aborted, the abort is

 deferred until the entry call completes, after which the task becomes completed.

 C954A02

 Check that if a task requeued with abort on a protected entry queue is aborted, the protected entry

 call is canceled and the aborted task becomes completed.

 C954A03

 Check that a requeue statement in an accept_statement with parameters may requeue the entry call

 to a protected entry with no parameters. Check that, if the call is queued on the new entry's queue,

 the original caller remains blocked after the requeue, but the accept_statement containing the

 requeue is completed. Note that this test uses a requeue "with abort," although it does not check

 that such a requeued caller can be aborted; that feature is tested elsewhere.

 C960001

 Confirm that a simple Delay Until statement is performed. Check that the delay does not complete

 before the requested time and that it does complete thereafter

 C960002

 Check that the simple "delay until" when the request time is "now" and also some time already in

 the past is obeyed and returns immediately

 C960004

 With the triggering statement being a delay and with the Asynchronous Select statement being in a

 tasking situation complete the abortable part before the delay expires. Check that the delay is

 cancelled and that the optional statements in the triggering part are not executed.

 C974001

 Check that the abortable part of an asynchronous select statement is aborted if it does not complete

 before the triggering statement completes, where the triggering statement is a delay_relative

 statement and check that the sequence of statements of the triggering alternative is executed after

 the abortable part is left.

 C974002

 Check that the sequence of statements of the triggering alternative of an asynchronous select

 statement is executed if the triggering statement is a delay_until statement, and the specified time

 has already passed. Check that the abortable part is not executed after the sequence of statements of

 the triggering alternative is left. Check that the sequence of statements of the triggering alternative

 of an asynchronous select statement is not executed if the abortable part completes before the

 triggering statement, and the triggering statement is a delay_until statement.

 C974003

 Check that the abortable part of an asynchronous select statement is aborted if it does not complete

 before the triggering statement completes, where the triggering statement is a task entry call, and

 the entry call is queued. Check that the sequence of statements of the triggering alternative is

 executed after the abortable part is left.

 C974004

 Check that the abortable part of an asynchronous select statement is aborted if it does not complete

 before the triggering statement completes, where the triggering statement is a task entry call, the

 entry call is queued, and the entry call completes by propagating an exception and that the sequence

 of statements of the triggering alternative is not executed after the abortable part is left and that

 the exception propagated by the entry call is re-raised immediately following the asynchronous

 select.

 C974005

 Check that Tasking_Error is raised at the point of an entry call which is the triggering statement of

 an asynchronous select, if the entry call is queued, but the task containing the entry completes

 before it can be accepted or canceled. Check that the abortable part is aborted if it does not complete

 before the triggering statement completes. Check that the sequence of statements of the triggering

 alternative is not executed.

 C974006

 Check that the sequence of statements of the triggering alternative of an asynchronous select

 statement is executed if the triggering statement is a protected entry call, and the entry is accepted

 immediately. Check that the corresponding entry body is executed before the sequence of statements

 of the triggering alternative. Check that the abortable part is not executed.

 C974007

 Check that the sequence of statements of the triggering alternative of an asynchronous select

 statement is not executed if the triggering statement is a protected entry call, and the entry is not

 accepted before the abortable part completes. Check that execution continues immediately following

 the asynchronous select.

 C974008

 Check that the abortable part of an asynchronous select statement is not started if the triggering

 statement is a task entry call, and the entry call is not queued. Check that the sequence of

 statements of the triggering alternative is executed after the abortable part is left.

 C974009

 Check that the abortable part of an asynchronous select statement is not started if the triggering

 statement is a task entry call, the entry call is not queued and the entry call completes by

 propagating an exception. Check that the exception is properly propagated to the asynchronous

 select statement and thus the sequence of statements of the triggering alternative is not executed

 after the abortable part is left. Check that the exception propagated by the entry call is re-raised

 immediately following the asynchronous select.

 C974010

 Check that the abortable part of an asynchronous select statement is not started if the triggering

 statement is a task entry call to a task that has already terminated. Check that Tasking_Error is

 properly propagated to the asynchronous select statement and thus the sequence of statements of

 the triggering alternative is not executed after the abortable part is left. Check that Tasking_Error

 is re-raised immediately following the asynchronous select.

 C974011

 Check that the sequence of statements of the triggering alternative of an asynchronous select

 statement is not executed if the triggering statement is a task entry call and the entry is not

 accepted before the abortable part completes. Check that the call queued on the entry is cancelled

 C974012

 Check that the abortable part of an asynchronous select statement is aborted if it does not complete

 before the triggering statement completes, where the triggering statement is a call on a protected

 entry which is queued.

 C974013

 Check that the abortable part of an asynchronous select statement is aborted if it does not complete

 before the triggering statement completes, where the triggering statement is a delay_until

 statement. Check that the sequence of statements of the triggering alternative is executed after the

 abortable part is left.

 C974014

 Check that if the triggering alternative of an asynchronous select statement is a delay and the

 abortable part completes before the delay expires then the delay is cancelled and the optional

 statements in the triggering part are not performed. In particular, check the case of the ATC in non-

tasking code.

 CA11001

 Check that a child unit can be used to provide an alternate view and operations on a private type in

 its parent package. Check that a child unit can be a package. Check that a WITH of a child unit

 includes an implicit WITH of its ancestor unit.

 CA11002

 Check that a public child can utilize its parent unit's visible definitions.

 CA11003

 Check that a public grandchild can utilize its ancestor unit's visible definitions.

 CA110040

 Check that the private part of a child library unit package can utilize its parent unit's visible

 definitions.

 CA110041

 Check that the private part of a child library unit package can utilize its parent unit's visible

 definitions.

 CA110042

 Check that the private part of a child library unit package can utilize its parent unit's visible

 definitions.

 CA110050

 Check that entities and operations declared in a package can be used in the private part of a child of

 a child of the package.

 CA110051

 Check that entities and operations declared in a package can be used in the private part of a child of

 a child of the package.

 CA11006

 Check that the private part of a child library unit can utilize its parent unit's private definition.

 CA11007

 Check that the private part of a grandchild library unit can utilize its grandparent unit's private

 definition.

 CA11008

 Check that a private child package can use entities declared in the visible part of its parent unit.

 CA11009

 Check that a private child package can use entities declared in the visible part of the parent unit of

 its parent unit.

 CA11010

 Check that a private child package can use entities declared in the private part of its parent unit.

 CA11011

 Check that a private child package can use entities declared in the private part of the parent unit of

 its parent unit.

 CA11012

 Check that a child package of a library level instantiation of a generic can be the instantiation of a

 child package of the generic. Check that the child instance can use its parent's declarations and

 operations, including a formal type of the parent.

 CA11013

 Check that a child function of a library level instantiation of a generic can be the instantiation of a

 child function of the generic. Check that the child instance can use its parent's declarations and

 operations, including a formal subprogram of the parent.

 CA11014

 Check that an instantiation of a child package of a generic package can use its parent's declarations

 and operations, including a formal package of the parent.

 CA11015

 Check that a generic child of a non-generic package can use its parent's declarations and operations.

 Check that the instantiation of the generic child can correctly use the operations.

 CA11016

 Check that a child of a non-generic package can be a private generic package. Check that the private

 child instance can use its parent's declarations and operations. Check that the body of a public child

 package can instantiate its sibling private generic package.

 CA11017

 Check that body of the parent package may depend on one of its own public children.

 CA11018

 Check that body of the parent package may depend on one of its own public generic children.

 CA11019

 Check that body of the parent package may depend on one of its own private generic children.

 CA11020

 Check that body of the generic parent package can depend on one of its own public generic children.

 CA11021

 Check that body of the generic parent package can depend on one of its own private generic

 children.

 CA11022

 Check that body of a child unit can instantiate its generic sibling.

 CA11A01

 Check that type extended in a public child inherits primitive operations from its ancestor.

 CA11A02

 Check that a type extended in a client of a public child inherits primitive operations from parent.

 CA11B01

 Check that a type derived in a public child inherits primitive operations from parent.

 CA11B02

 Check that a type derived in a client of a public child inherits primitive operations from parent.

 CA11C01

 Check that when primitive operations declared in a child package override operations declared in

 ancestor packages, a client of the child package inherits the operations correctly.

 CA11C02

 Check that primitive operations declared in a child package override operations declared in ancestor

 packages, and that operations on class-wide types defined in the ancestor packages dispatch as

 appropriate to these overriding implementations.

 CA11C03

 Check that when a child unit is "withed", visibility is obtained to all ancestor units named in the

 expanded name of the "withed" child unit. Check that when the parent unit is "used", the simple

 name of a "withed" child unit is made directly visible.

 CA11D010

 Check that a child unit can raise an exception that is declared in parent.

 CA11D011

 Check that a child unit can raise an exception that is declared in parent.

 CA11D012

 Check that a child unit can raise an exception that is declared in parent.

 CA11D013

 Check that a child unit can raise an exception that is declared in parent.

 CA11D02

 Check that an exception declared in a package can be raised by a child of a child package. Check

 that it can be renamed in the child of the child package and raised with the correct effect.

 CA11D03

 Check that an exception declared in a package can be raised by a client of a child of the package.

 Check that it can be renamed in the client of the child of the package and raised with the correct

 effect.

 CA13001

 Check that a separate protected unit declared in a non-generic child unit of a private parent have

 the same visibility into its parent, its siblings, and packages on which its parent depends as is

 available at the point of their declaration.

 CA13002

 Check that two library child units and/or subunits may have the same simple names if they have

 distinct expanded names.

 CA13003

 Check that separate subunits which share an ancestor may have the same name if they have

 different fully qualified names. Check the case of separate subunits of separate subunits. This test is

 a change in semantics from Ada 83 to Ada 9X.

 CA13A01

 Check that subunits declared in non-generic child units of a public parent have the same visibility

 into its parent, its siblings (public and private), and packages on which its parent depends as is

 available at the point of their declaration.

 CA13A02

 Check that subunits declared in generic child units of a public parent have the same visibility into

 its parent, its siblings (public and private), and packages on which its parent depends as is

 available at the point of their declaration.

 CB20001

 Check that exceptions can be handled in accept bodies, and that a task object that has an exception

 handled in an accept body is still viable for future use.

 CB20003

 Check that exceptions can be raised, reraised, and handled in an accessed subprogram.

 CB20004

 Check that exceptions propagate correctly from objects of protected types. Check propagation from

 protected entry bodies.

 CB20005

 Check that exceptions are raised and properly handled locally in protected operations.

 CB20006

 Check that exceptions are raised and properly handled (including propagation by reraise) in

 protected operations.

 CB20007

 Check that exceptions are raised and can be directly propagated to the calling unit by protected

 operations.

 CB20A02

 Check that the name and pertinent information about a user defined exception are available to an

 enclosing program unit even when the enclosing unit has no visibility into the scope where the

 exception is declared and raised.

 CB40A01

 Check that a user defined exception is correctly propagated out of a public child package.

 CB40A020

 Check that a user defined exception is correctly propagated from a private child subprogram to its

 parent and then to a client of the parent.

 CB40A021

 Check that a user defined exception is correctly propagated from a private child subprogram to its

 parent and then to a client of the parent.

 CB40A030

 Check that a predefined exception is correctly propagated from a private child package through a

 visible child package to a client.

 CB40A031

 Check that a predefined exception is correctly propagated from a private child package through a

 visible child package to a client.

 CB40A04

 Check that a predefined exception is correctly propagated out of a public child function to a client.

 CB41001

 Check that the 'Identity attribute returns the unique identity of an exception. Check that the

 Raise_Exception procedure can raise an exception that is specified through the use of the 'Identity

 attribute, and that Reraise_Occurrence can re-raise an exception occurrence using an exception

 choice parameter.

 CB41002

 Check that the message string input parameter in a call to the Raise_Exception procedure is

 associated with the raised exception occurrence, and that the message string can be obtained using

 the Exception_Message function with the associated Exception_Occurrence object. Check that

 Function Exception_Information is available to provide implementation-defined information about

 the exception occurrence.

 CB41003

 Check that an exception occurrence can be saved into an object of type Exception_Occurrence using

 the procedure Save_Occurrence. Check that a saved exception occurrence can be used to reraise

 another occurrence of the same exception using the procedure Reraise_Occurrence. Check that the

 function Save_Occurrence will allocate a new object of type Exception_Occurrence_Access, and saves

 the source exception to the new object which is returned as the function result.

 CB41004

 Check that Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or

 Null_Occurrence. Check that Exception_Message, Exception_Identity, Exception_Name, and

 Exception_Information raise Constraint_Error for a Null_Occurrence input parameter. Check that

 calling the Save_Occurrence subprograms with the Null_Occurrence input parameter saves the

 Null_Occurrence to the appropriate target object, and does not raise Constraint_Error. Check that

 Null_Id is the default initial value of type Exception_Id.

 CC30001

 Check that if a non-overriding primitive subprogram is declared for a type derived from a formal

 derived tagged type, the copy of that subprogram in an instance can override a subprogram inherited

 from the actual type.

 CC50001

 Check that, in an instance, each implicit declaration of a predefined operator of a formal tagged

 private type declares a view of the corresponding predefined operator of the actual type (even if the

 operator has been overridden for the actual type). Check that the body executed is determined by the

 type and tag of the operands.

 CC50A01

 Check that a formal parameter of a library-level generic unit may be a formal tagged private type.

 Check that a nonlimited tagged type may be passed as an actual. Check that if the formal type is

 indefinite, both indefinite and definite types may be passed as actuals.

 CC50A02

 Check that a nonlimited tagged type may be passed as an actual to a formal (non-tagged) private

 type. Check that if the formal type has an unknown discriminant part, a class-wide type may also be

 passed as an actual.

 CC51001

 Check that a formal parameter of a generic package may be a formal derived type. Check that the

 formal derived type may have an unknown discriminant part. Check that the ancestor type in a

 formal derived type definition may be a tagged type, and that the actual parameter may be a

 descendant of the ancestor type. Check that the formal derived type belongs to the derivation class

 rooted at the ancestor type; specifically, that components of the ancestor type may be referenced

 within the generic. Check that if a formal derived subtype is indefinite then the actual may be either

 definite or indefinite.

 CC51002

 Check that, for formal derived tagged types, the formal parameter names and default expressions for

 a primitive subprogram in an instance are determined by the primitive subprogram of the ancestor

 type, but that the primitive subprogram body executed is that of the actual type.

 CC51003

 Check that if the ancestor type of a formal derived type is a composite type that is not an array type,

 the formal type inherits components, including discriminants, from the ancestor type. Check for the

 case where the ancestor type is a record type, and the formal derived type is declared in a generic

 subprogram.

 CC51004

 Check that if the ancestor type of a formal derived type is a composite type that is not an array type,

 the formal type inherits components, including discriminants, from the ancestor type. Check for the

 case where the ancestor type is a tagged type, and the formal derived type is declared in a generic

 subprogram.

 CC51006

 Check that, in an instance, each implicit declaration of a primitive subprogram of a formal

 (nontagged) derived type declares a view of the corresponding primitive subprogram of the ancestor

 type, even if the subprogram has been overridden for the actual type. Check that for a formal derived

 type with no discriminant part, if the ancestor subtype is an unconstrained scalar subtype then the

 actual may be either constrained or unconstrained.

 CC51007

 Check that a generic formal derived tagged type is a private extension. Specifically, check that, for a

 generic formal derived type whose ancestor type has abstract primitive subprograms, neither the

 formal derived type nor its descendants need be abstract. Check that objects and components of the

 formal derived type and its nonabstract descendants may be declared and allocated, as may

 nonabstract functions returning these types, and that aggregates of nonabstract descendants of the

 formal derived type are legal. Check that calls to the abstract primitive subprograms of the ancestor

 dispatch to the bodies corresponding to the tag of the actual parameters.

 CC51A01

 Check that, in an instance, each implicit declaration of a user-defined subprogram of a formal

 derived record type declares a view of the corresponding primitive subprogram of the ancestor, even

 if the primitive subprogram has been overridden for the actual type.

 CC51B03

 Check that the attribute S'Definite, where S is an indefinite formal private or derived type, returns

 true if the actual corresponding to S is definite, and returns false otherwise.

 CC51D01

 Check that, in an instance, each implicit declaration of a user-defined subprogram of a formal

 private extension declares a view of the corresponding primitive subprogram of the ancestor, and

 that if the tag in a call is statically determined to be that of the formal type, the body executed will

 be that corresponding to the actual type. Check subprograms declared within a generic formal

 package. Check for the case where the actual type passed to the formal private extension is a specific

 tagged type. Check for several types in the same class.

 CC51D02

 Check that, in an instance, each implicit declaration of a user-defined subprogram of a formal

 private extension declares a view of the corresponding primitive subprogram of the ancestor, and

 that if the tag in a call is statically determined to be that of the formal type, the body executed will

 be that corresponding to the actual type. Check subprograms declared within a generic formal

 package. Check for the case where the actual type passed to the formal private extension is a class-

wide type. Check for several types in the same class.

 CC54001

 Check that a general access-to-constant type may be passed as an actual to a generic formal access-

to-constant type.

 CC54002

 Check that a general access-to-variable type may be passed as an actual to a generic formal general

 access-to-variable type. Check that designated objects may be read and updated through the access

 value.

 CC54003

 Check that a general access-to-subprogram type may be passed as an actual to a generic formal

 access-to-subprogram type. Check that designated subprograms may be called by dereferencing the

 access values.

 CC54004

 Check that the designated type of a generic formal pool-specific access type may be class-wide. Check

 that calls to primitive subprograms in the instance dispatch to the appropriate bodies when the

 controlling operand is a dereference of an object of the access- to-class-wide type.

 CC70001

 Check that the template for a generic formal package may be a child package, and that a child

 instance which is an instance of the template may be passed as an actual to the formal package.

 Check that the visible part of the generic formal package includes the first list of basic declarative

 items of the package specification.

 CC70002

 Check that a formal package actual part may specify actual parameters for a generic formal package.

 Check that these actual parameters may be formal types, formal objects, and formal subprograms.

 Check that the visible part of the generic formal package includes the first list of basic declarative

 items of the package specification, and that if the formal package actual part is (<>), it also includes

 the generic formal part of the template for the formal package.

 CC70003

 Check that the actual passed to a formal package may be a formal access-to-subprogram type. Check

 that the visible part of the generic formal package includes the first list of basic declarative items of

 the package specification.

 CC70A01

 Check that the visible part of a generic formal package includes the first list of basic declarative

 items of the package specification. Check for a generic package which declares a formal package with

 (<>) as its actual part.

 CC70A02

 Check that the visible part of a generic formal package includes the first list of basic declarative

 items of the package specification. Check for a generic subprogram which declares a formal package

 with (<>) as its actual part.

 CC70B01

 Check that a formal package actual part may specify actual parameters for a generic formal package.

 Check that a use clause in the generic formal part provides direct visibility of declarations within the

 generic formal package. Check that the scope of such a use clause extends to the generic subprogram

 body. Check that the visible part of the generic formal package includes the first list of basic

 declarative items of the package specification. Check the case where the formal package is declared

 in a generic subprogram.

 CC70B02

 Check that a formal package actual part may specify actual parameters for a generic formal package.

 Check that such an actual parameter may be a formal parameter of a previously declared formal

 package (with a (<>) actual part). Check that a use clause in the generic formal part provides direct

 visibility of declarations within the generic formal package, including formal parameters (if the

 formal package has a (<>) actual part). Check that the scope of such a use clause extends to the

 generic subprogram body. Check that the visible part of the generic formal package includes the first

 list of basic declarative items of the package specification. Check the case where the formal package

 is declared in a generic package.

 CC70C01

 Check that a generic formal package is an instance. Specifically, check that a generic formal package

 may be passed as an actual parameter in an instantiation of a generic package. Check that the

 visible part of the generic formal package includes the first list of basic declarative items of the

 package specification.

 CC70C02

 Check that a generic formal package is an instance. Specifically, check that a generic formal package

 may be passed as an actual parameter to another generic formal package. Check that the visible part

 of the generic formal package includes the first list of basic declarative items of the package

 specification.

 CXA3001

 Check that the character classification functions defined in package Ada.Characters.Handling

 produce correct results when provided constant arguments from package Ada.Characters.Latin_1.

 CXA3002

 Check that the conversion functions for Characters and Strings defined in package

 Ada.Characters.Handling provide correct results when given character/string input parameters.

 CXA3003

 Check that the functions defined in package Ada.Characters.Handling for use in classifying and

 converting characters between the ISO 646 and type Character sets produce the correct results with

 both Character and String input values.

 CXA3004

 Check that the functions defined in package Ada.Characters.Handling for classification of and

 conversion between Wide_Character and Character values produce correct results when given the

 appropriate Character and String inputs.

 CXA4001

 Check that the types, operations, and other entities defined within the package Ada.Strings.Maps

 are available and/or produce correct results.

 CXA4002

 Check that the subprograms defined in package Ada.Strings.Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Index, "*" (string constructor function),

 Count, Trim, and Replace_Slice.

 CXA4003

 Check that the subprograms defined in package Ada.Strings.Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Index, Index_Non_Blank, Head, Tail,

 Translate, Find_Token, Move, Overwrite, and Replace_Slice.

 CXA4004

 Check that the subprograms defined in package Ada.Strings.Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Count, Find_Token, Index,

 Index_Non_Blank, and Move.

 CXA4005

 Check that the subprograms defined in package Ada.Strings.Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Delete, Head, Insert, Overwrite,

 Replace_Slice, Tail, Trim, and "*".

 CXA4006

 Check that the subprograms defined in package Ada.Strings.Bounded are available, and that they

 produce correct results. Specifically, check the subprograms Length, Slice, "&", To_Bounded_String,

 Append, Index, To_String, Replace_Slice, Trim, Overwrite, Delete, Insert, and Translate.

 CXA4007

 Check that the subprograms defined in package Ada.Strings.Bounded are available, and that they

 produce correct results. Specifically, check the subprograms Append, Count, Element, Find_Token,

 Head, Index_Non_Blank, Replace_Element, Replicate, Tail, To_Bounded_String, "&", ">", "<", ">=",

 "<=", and "*".

 CXA4008

 Check that the subprograms defined in package Ada.Strings.Bounded are available, and that they

 produce correct results, especially under conditions where truncation of the result is required.

 Specifically, check the subprograms Append, Count with non-Identity maps, Index with non-

Identity maps, Index with Set parameters, Insert (function and procedure), Replace_Slice (function

 and procedure), To_Bounded_String, and Translate.

 CXA4009

 Check that the subprograms defined in package Ada.Strings.Bounded are available, and that they

 produce correct results, especially under conditions where truncation of the result is required.

 Specifically, check the subprograms Overwrite (function and procedure), Delete, Function Trim

 (blanks), Trim (Set characters, function and procedure), Head, Tail, and Replicate (characters and

 strings).

 CXA4010

 Check that the subprograms defined in package Ada.Strings.Unbounded are available, and that they

 produce correct results. Specifically, check the subprograms To_String, To_Unbounded_String,

 Insert, "&", "*", Length, Slice, Replace_Slice, Overwrite, Index, Index_Non_Blank, Head, Tail, and

 "=", "<=", ">=".

 CXA4011

 Check that the subprograms defined in package Ada.Strings.Unbounded are available, and that they

 produce correct results. Specifically, check the subprograms To_Unbounded_String, "&", ">", "<",

 Element, Replace_Element, Count, Find_Token, Translate, Trim, Delete, and "*".

 CXA4012

 Check that the types, operations, and other entities defined within the package

 Ada.Strings.Wide_Maps are available and produce correct results.

 CXA4013

 Check that the subprograms defined in package Ada.Strings.Wide_Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Index, "*" (Wide_String constructor

 function), Count, Trim, and Replace_Slice.

 CXA4014

 Check that the subprograms defined in package Ada.Strings.Wide_Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Find_Token, Head, Index,

 Index_Non_Blank, Move, Overwrite, and Replace_Slice, Tail, and Translate. Use the access-to-

subprogram mapping version of Translate (function and procedure).

 CXA4015

 Check that the subprograms defined in package Ada.Strings.Wide_Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Count, Find_Token, Index,

 Index_Non_Blank, and Move.

 CXA4016

 Check that the subprograms defined in package Ada.Strings.Wide_Fixed are available, and that they

 produce correct results. Specifically, check the subprograms Delete, Head, Insert, Overwrite,

 Replace_Slice, Tail, Trim, and "*".

 CXA4017

 Check that the subprograms defined in package Ada.Strings.Wide_Bounded are available, and that

 they produce correct results. Specifically, check the subprograms Append, Delete, Index, Insert ,

 Length, Overwrite, Replace_Slice, Slice, "&", To_Bounded_Wide_String, To_Wide_String,

 Translate, and Trim.

 CXA4018

 Check that the subprograms defined in package Ada.Strings.Wide_Bounded are available, and that

 they produce correct results. Specifically, check the subprograms Append, Count, Element,

 Find_Token, Head, Index_Non_Blank, Replace_Element, Replicate, Tail, To_Bounded_Wide_String,

 "&", ">", "<", ">=", "<=", and "*".

 CXA4019

 Check that the subprograms defined in package Ada.Strings.Wide_Bounded are available, and that

 they produce correct results, especially under conditions where truncation of the result is required.

 Specifically, check the subprograms Append, Count with non-Identity maps, Index with non-

Identity maps, Index with Set parameters, Insert (function and procedure), Replace_Slice (function

 and procedure), To_Bounded_Wide_String, and Translate (function and procedure).

 CXA4020

 Check that the subprograms defined in package Ada.Strings.Wide_Bounded are available, and that

 they produce correct results, especially under conditions where truncation of the result is required.

 Specifically, check the subprograms Overwrite (function and procedure), Delete, Function Trim

 (blanks), Trim (Set wide characters, function and procedure), Head, Tail, and Replicate (wide

 characters and wide strings).

 CXA4021

 Check that the subprograms defined in package Ada.Strings.Wide_Unbounded are available, and

 that they produce correct results. Specifically, check the subprograms Head, Index,

 Index_Non_Blank, Insert, Length, Overwrite, Replace_Slice, Slice, Tail, To_Wide_String,

 To_Unbounded_Wide_String, "*", "&", and "=", "<=", ">=".

 CXA4022

 Check that the subprograms defined in package Ada.Strings.Wide_Unbounded are available, and

 that they produce correct results. Specifically, check the subprograms Count, Element, Index,

 Replace_Element, To_Unbounded_Wide_String, and "&", ">", "<".

 CXA4023

 Check that the subprograms defined in package Ada.Strings.Wide_Unbounded are available, and

 that they produce correct results. Specifically, check the subprograms Delete, Find_Token,

 Translate, Trim, and "*".

 CXA8001

 Check that all elements to be transferred to a sequential file of mode Append_File will be placed

 following the last element currently in the file. Check that it is possible to append data to a file that

 has been previously appended to. Check that the predefined procedure Write will place an element

 after the last element in the file in mode Append_File.

 CXA8002

 Check that resetting a file using mode Append_File allows for the writing of elements to the file

 starting after the last element in the file. Check that the result of function Name can be used on a

 subsequent reopen of the file. Check that a mode change occurs on reset of a file to/from mode

 Append_File.

 CXA8003

 Check that Append_File mode has not been added to package Direct_IO.

 CXA9001

 Check that the operations defined in the generic package Ada.Storage_IO provide the ability to store

 and retrieve objects which may include implicit levels of indirection in their implementation, from

 an in-memory buffer.

 CXA9002

 Check that the operations defined in the generic package Ada.Storage_IO provide the ability to store

 and retrieve objects of tagged types from in-memory buffers.

 CXAA001

 Check that the Line_Length and Page_Length maximums for a Text_IO file of mode Append_File

 are initially zero (unbounded) after a Create, Open, or Reset, and that these values can be modified

 using the procedures Set_Line_Length and Set_Page_Length. Check that setting the Line_Length

 and Page_Length attributes to zero results in an unbounded Text_IO file. Check that setting the line

 length when in Append_Mode doesn't change the length of lines previously written to the Text_IO

 file.

 CXAA002

 Check that the procedures New_Page, Set_Line, Set_Col, and New_Line subprograms perform

 properly on a text file created with mode Append_File. Check that the attributes Page, Line, and

 Column are all set to 1 following the creation of a text file with mode Append_File. Check that the

 functions Page, Line, and Col perform properly on a text file created with mode Append_File. Check

 that the procedures Put and Put_Line perform properly on text files created with mode Append_File.

 Check that the procedure Set_Line sets the current line number to the value specified by the

 parameter "To" for text files created with mode Append_File. Check that the procedure Set_Col sets

 the current column number to the value specified by the parameter "To" for text files created with

 mode Append_File.

 CXAA003

 Check that the procedures New_Page, Set_Line, Set_Col, and New_Line subprograms perform

 properly on a text file reset (from Out_File) with mode Append_File. Check that the attributes Page,

 Line, and Column are all set to 1 following the reset of a text file with mode Append_File. Check that

 the functions Page, Line, and Col perform properly on a text file reset with mode Append_File. Check

 that the procedures Put and Put_Line perform properly on text files reset with mode Append_File.

 Check that the procedure Set_Line sets the current line number to the value specified by the

 parameter "To" for text files reset with mode Append_File. Check that Set_Line has no effect if the

 specified line equals the current line. Check that the procedure Set_Col sets the current column

 number to the value specified by the parameter "To" for text files reset with mode Append_File.

 CXAA004

 Check that the procedures New_Page, Set_Line, Set_Col, and New_Line perform properly on a text

 file opened with mode Append_File. Check that the attributes Page, Line, and Column are all set to

 1 following the opening of a text file with mode Append_File. Check that the functions Page, Line,

 and Col perform properly on a text file opened with mode Append_File. Check that the procedures

 Put and Put_Line perform properly on text files opened with mode Append_File. Check that the

 procedure Set_Line sets the current line number to the value specified by the parameter "To" for text

 files opened with mode Append_File. Check that the procedure Set_Col sets the current column

 number to the value specified by the parameter "To" for text files reset with mode Append_File.

 CXAA005

 Check that the procedure Put, when called with string parameters, does not update the line number

 of a text file of mode Append_File, when the line length is unbounded (i.e., only the column number

 is updated). Check that a call to the procedure Put with a null string argument has no measurable

 effect on a text file of mode Append_File.

 CXAA006

 Check that for a bounded line length text file of mode Append_File, when the number of characters

 to be output exceeds the number of columns remaining on the current line, a call to Put will output

 characters of the string sufficient to fill the remaining columns of the line (up to line length), then

 output a line terminator, reset the column number, increment the line number, then output the

 balance of the item. Check that the procedure Put does not raise Layout_Error when the number of

 characters to be output exceeds the line length of a bounded text file of mode Append_File.

 CXAA007

 Check that the capabilities of Text_IO.Integer_IO perform correctly on files of Append_File mode, for

 instantiations with integer and user-defined subtypes. Check that the formatting parameters

 available in the package can be used and modified successfully in the storage and retrieval of data.

 CXAA008

 Check that the capabilities provided in instantiations of the Ada.Text_IO.Fixed_IO package operate

 correctly when the mode of the file is Append_File. Check that Fixed_IO procedures Put and Get

 properly transfer fixed point data to/from data files that are in Append_File mode. Check that the

 formatting parameters available in the package can be used and modified successfully in the

 appending and retrieval of data.

 CXAA009

 Check that the capabilities provided in instantiations of the Ada.Text_IO.Float_IO package operate

 correctly when the mode of the file is Append_File. Check that Float_IO procedures Put and Get

 properly transfer floating point data to/from data files that are in Append_File mode. Check that the

 formatting parameters available in the package can be used and modified successfully in the

 appending and retrieval of data.

 CXAA010

 Check that the operations defined in package Ada.Text_IO.Decimal_IO are available, and that they

 function correctly when used for the input/output of Decimal types.

 CXAA011

 Check that the operations of Text_IO.Enumeration_IO perform correctly on files of Append_File

 mode, for instantiations using enumeration types. Check that Enumeration_IO procedures Put and

 Get properly transfer enumeration data to/from data files. Check that the formatting parameters

 available in the package can be used and modified successfully in the storage and retrieval of data.

 CXAA012

 Check that the exception Mode_Error is raised when an attempt is made to read from (perform a

 Get_Line) or use the predefined End_Of_File function on a text file with mode Append_File.

 CXAA013

 Check that the exception Mode_Error is raised when an attempt is made to skip a line or page using

 the predefined Skip_Line and Skip_Page procedures on a text file with mode Append_File.

 CXAA014

 Check that the exception Mode_Error is raised when an attempt is made to check for the end of a

 line or page using the predefined functions End_Of_Line or End_Of_Page on a text file with mode

 Append_File.

 CXAA015

 Check that the exception Status_Error is raised when an attempt is made to create or open a file in

 Append_File mode when the file is already open. Check that the exception Name_Error is raised by

 procedure Open when attempting to open a file in Append_File mode when the name supplied as the

 filename does not correspond to an existing external file.

 CXAB001

 Check that the operations defined in package Wide_Text_IO allow for the input/output of

 Wide_Character and Wide_String data.

 CXAC001

 Check that the attribute T'Write will, for any specific non-limited type T, write an item of the

 subtype to the stream. Check that the attribute T'Read will, for a specific non-limited type T, read a

 value of the subtype from the stream.

 CXAC002

 Check that the subprograms defined in package Ada.Streams.Stream_IO are accessible, and that

 they provide the appropriate functionality.

 CXAC003

 Check that the correct exceptions are raised when improperly manipulating stream file objects.

 CXACA01

 Check that the default attributes 'Write and 'Read work properly when used with objects of a

 variety of types, including records with default discriminants, records without default

 discriminants, but which have the discriminant described in a representation clause for the type,

 and arrays.

 CXACA02

 Check that user defined subprograms can override the default attributes 'Read and 'Write using

 attribute definition clauses. Use objects of record types.

 CXACB01

 Check that the default attributes 'Input and 'Output work properly when used with objects of a

 variety of types, including two-dimensional arrays and records without default discriminants.

 CXACB02

 Check that user defined subprograms can override the default attributes 'Input and 'Output using

 attribute definition clauses, when used with objects of discriminated record and multi-dimensional

 array types.

 CXACC01

 Check that the use of 'Class'Output and 'Class'Input allow stream manipulation of objects of non-

limited class-wide types.

 CXB3001

 Check that the specifications of the package Interfaces.C are available for use.

 CXB3002

 Check that the specifications of the package Interfaces.C.Strings are available for use.

 CXB3003

 Check that the specifications of the package Interfaces.C.Pointers are available for use.

 CXB4001

 Check that the specifications of the package Interfaces.COBOL are available for use

 CXB5001

 Check that the specification of the package Interfaces.FORTRAN are available for use.

 CXC3001

 Check that an interrupt handler can be attached to an interrupt using Attach_Handler and

 Exchange_Handler. Check that Is_Reserved and Is_Attached return the correct status of an

 interrupt. Check that Current_Handler returns an access value to the handler currently attached to

 an interrupt.

 CXC6001

 Check that atomic and volatile elementary types that are not by-copy types, as well as types with

 subcomponents that are atomic or volatile are by-reference types.

 CXC6002

 Check that atomic and volatile composite types that are not by-copy types, as well as types with

 subcomponents that are atomic or volatile are by-reference types. Check that parameters are passed

 by copy when an actual parameter is defined as atomic or volatile, and the formal parameter is not.

 CXC7001

 In the package Ada.Task_Identification, check that Current_Task returns the Task_ID of the calling

 task; Abort_Task aborts the task corresponding to the Task_ID parameter; Is_Terminated and

 Is_Callable return the corresponding attribute values for the task corresponding to the Task_ID

 parameter. Check that an object of type Task_ID is default initialized to Null_Task_ID. Check that

 the attribute T'Identity returns a Task_ID that identifies task T and the C'Caller returns a Task_ID

 that identifies the caller of entry E.

 CXD1001

 Check that the range of System.Priority is at least 30 values; that System.Interrupt_Priority has at

 least one value and is higher than System.Priority and the System.Default_Priority is at the center

 of the range of System.Priority. Check the behavior of Ada.Dynamic_Priorities.Set_Priority and

 Get_Priority; specifically that Set_Priority will set a value that can later be confirmed with

 Get_Priority. Check that, in the absence of Pragma Priority, the main subprogam has a base

 priority of Default_Priority.

 CXD1002

 Check that the base priority of the main subprogram can be set by means of pragma priority.

 Check that a task's base priority is the priority of the parent at the time the task is created when

 the priority of the parent has been set by means of pragma priority Check that a task's base priority

 is the priority of the parent at the time the task is created when the priority of the grandfather has

 been set by means of pragma priority

 CXD1003

 Check that during rendezvous, the task accepting the entry call inherits the active priority of the

 caller. Specifically, check when the caller has a higher priority than the receiver.

 CXD1004

 Check that during activation, a task being activated inherits the active priority of its activator (in

 this case the activator's base priority). Check that, if this priority is higher than the base priority of

 the activated task, this base priority remains unchanged.

 CXD1005

 Check that, during activation, a task being activated inherits the active priority of its activator.

 Specifically, check when the active priority of the activator is higher than the activator's Base

 Priority. Check that if the priority of the activated task is higher than its base priority, the base

 priority remains unchanged.

 CXD2001

 Check that when Task_Dispatching_Policy is FIFO_Within_Priorities and the setting of the base

 priority of a task takes effect, the task is added to the tail of the ready queue of its active priority.

 CXD2003

 Check that when Task_Dispatching_Policy is FIFO_Within_Priorities and and a task's priority is

 lowered due to the loss of inherited priority it is added to the head of the ready queue for its priority

 CXD2004

 Check that when Task_Dispatching_Policy is FIFO_Within_Priorities and the active priority of a

 running task is lowered due to loss of its inherited priority and there is a ready task of the same

 priority that is not running, the running task continues to run.

 CXD3001

 Check that Program_Error is raised if a task calls a protected operation who's ceiling is lower than

 the task's active priority. Check this for Function, Procedure and Entry. Check that the exception is

 not raised if the ceiling is equal to or higher than the priority of the calling task.

 CXD3002

 Check that when Locking_Policy is Ceiling_Locking and no pragma Priority, Interrupt_Priority,

 Interrupt_Handler or Attach_Handler is specified in a protected definition the Ceiling Priority of the

 protected object is System.Priority'Last

 CXD4001

 Check that when Priority Queuing is in effect and the base priority of a task is set (changed), the

 priorities of any queued calls from that task are updated and that the ordering is modified

 accordingly.

 CXD4002

 Check that if no Queuing_Policy is specified, the policy for the partition is FIFO_Queuing and that

 the priorities of the calling tasks have no effect.

 CXD4003

 Check that if Queuing_Policy FIFO_Queuing is specified for a partition the task entry queues are

 handled in FIFO order and that the priorities of the calling tasks have no effect.

 CXD4004

 Check that changes to the active priority of the caller do not affect the priority of a call after it is first

 queued when the queuing policy is priority queuing.

 CXD4005

 Check that when Priority Queuing is in effect and the base priority of a task is set (changed), the

 priorities of any queued calls from that task to entries in a Protected Object are updated and that the

 ordering is modified accordingly.

 CXD4006

 Check that if Queuing_Policy is Priority_Queuing, the calls to an entry are queued in an order

 consistent with the priority of the calls and that if an entry is removed and then reinserted it is

 added behind any other calls with equal priority in that queue.

 CXD5001

 Check that for Get_Priority, Tasking_Error is raised if the specified task has terminated. Check that

 for Get & Set Priority, Program_Error is raised if the task has a null Task_Identification.

 CXD8001

 Check the basic functions in the Package Ada.Real_Time.

 CXDA001

 Check that, in Ada.Synchronous_Task_Control, Set_True and Set_False alter the state of a

 Suspension_Object appropriately. Check that Current_State returns the expected state. Check that

 the initial value of a Suspension_Object is set to false.

 CXDA002

 Check that, in Ada.Synchronous_Task_Control, Suspend_Until_True does suspend the task until the

 Suspension_Object is Set_True. Check that a call on Suspend_Until_True will raise Program_Error

 if another task is waiting on the same Suspension_Object.

 CXDB001

 Check that, in Ada.Asynchronous_Task_Control, the Hold operation reduces the priority of the

 target task to such a state that it does not run and that Continue raises it such that it will run

 again. Check that Is_Held returns true if, and only if, the target task is in the Held state. Check

 that Tasking_Error is raised if any of these operations is applied to a task that is terminated.

 CXDB002

 Check that the effect of calling Get_Priority and Set_Priority on a Held task is the same as on any

 other task.

 CXDB003

 Check that if a task becomes Held while waiting in a selective accept and an entry call is issued to

 one of the open entries, the corresponding accept body executes. Check that once the rendezvous

 completes the task does not execute until another Continue.

 CXDB004

 Check that if a calling task is Held while waiting for a rendezvous to complete the active priority of

 the receiver is unaffected.

 CXE1001

 Check that the attribute D'Partition_ID is available where D denotes a library level declaration.

 Check that this attribute identifies the partition in which D is elaborated.

 CXE5001

 Check that the specifications of the package System.RPC are available for use.

 CXF1001

 Check that values of 2 and 10 are allowable values for Machine_Radix of a decimal first subtype.

 Check that the value of Decimal.Max_Decimal_Digits is at least 18; the value of Decimal.Max_Scale

 is at least 18; the value of Decimal.Min_Scale is at most 0.

 CXF2001

 Check that the Divide procedure provides the following results: Quotient = Dividend divided by

 Divisor and Remainder = Dividend - (Divisor * Quotient) Check that the Remainder is calculated

 exactly.

 CXF3A01

 Check that the function Ada.Text_IO.Editing.Valid returns False if a) Pic_String is not a well-

formed Picture string, or b) the length of Pic_String exceeds Max_Picture_Length, or c)

 Blank_When_Zero is True and Pic_String contains '*'; Check that Valid otherwise returns True.

 CXF3A02

 Check that the function Ada.Text_IO.Editing.To_Picture raises Picture_Error if the picture string

 provided as input parameter does not conform to the composition constraints defined for picture

 strings. Check that when Pic_String is applied to To_Picture, the result is equivalent to the actual

 string parameter of To_Picture; Check that when Blank_When_Zero is applied to To_Picture, the

 result is the same value as the Blank_When_Zero parameter of To_Picture.

 CXF3A03

 Check that function Length in the generic package Decimal_Output returns the number of

 characters in the edited output string produced by function Image, for a particular decimal type,

 currency string, and radix mark. Check that function Valid in the generic package Decimal_Output

 returns correct results based on the particular decimal value, and the Picture and Currency string

 parameters.

 CXG1001

 Check that the subprograms defined in the package Ada.Numerics.Generic_Complex_Types provide

 correct results. Specifically, check the functions Re, Im (both versions), procedures Set_Re, Set_Im

 (both versions), functions Compose_From_Cartesian (all versions), Compose_From_Polar, Modulus,

 Argument, and "abs".

 CXG1002

 Check that the subprograms defined in the package Ada.Numerics.Generic_Complex_Types provide

 the prescribed results. Specifically, check the various versions of functions "+" and "-".

 CXG1003

 Check that the subprograms defined in the package Text_IO.Complex_IO provide correct results.

 CXG1004

 Check that the specified exceptions are raised by the subprograms defined in package

 Ada.Numerics.Generic_Complex_Elementary_Functions given the prescribed input parameter

 values.

 CXG1005

 Check that the subprograms defined in the package

 Ada.Numerics.Generic_Complex_Elementary_Functions provide correct results.

 LXD7001

 Check that a partition obeys the restriction if a configuration pragma Restrictions

 (No_Task_Hierarchy) is included.

 LXD7003

 Check that a partition obeys the restriction if a configuration pragma Restrictions

 (No_Abort_Statements) is included. Specifically a task with an abort_statement is not allowed.

 LXD7004

 Check that a partition obeys the restriction if a configuration pragma Restrictions

 (No_Terminate_Alternatives) is included.

 LXD7005

 Check that a partition obeys the restriction if a configuration pragma Restrictions

 (No_Task_Allocators) is included.

 LXD7006

 Check that a partition obeys the restriction if a configuration pragma Restrictions

 (No_Task_Allocators) is included. Specifically that there are no allocators for types containing task

 subcomponents

 LXD7007

 Check that a partition obeys the restriction if a configuration pragma Restrictions

 (No_Dynamic_Priorities) is included. Specifically when there is a semantic dependency on

 Ada.Dynamic_Priorities in a package making up the partition

