Note that this docunent contains the OBIJECTI VE section of each Ada 95 test.
None
of the | egacy tests are included.

B330001

Check that if a subtype indication of a variable object defines an

i ndefinite subtype, then there is an initialization. Check that if the
array type definition of a variable object defines an unconstrai ned
array subtype, then there is an initialization. Check that indefinite
subtypes may not be used as the subtype indication of a conponent
definition (in either an array or a record definition).

B354001

Check that the expression of a nodul ar_type_definition nmust be static
and that the expected type of the expression can be of any integer
type. Check that the nodul us nust be positive. Check that noduli that
are powers of two are allowed up to and including, but not exceeding,
System Max_Bi nary_Modul us. Check that non-power-of-two noduli are

all owed as long as they do not exceed System Max_Nonbi nary_Modul us.
Check that the value of a potentially static expression of a nodul ar
type that appears in a nonstatic context must be within the base range
of its expected type. Check that the predefined | ogical operators and
menbership tests are avail abl e.

B360001

Check that, within the definition of a nonlimted conposite type or a
l[imted conposite type that beconmes nonlimted later in its i mediate
scope, if a conponent definition contains the reserved word aliased and
the type of the conponent is discrimnated, the nom nal subtype of the
conponent may not be unconstr ai ned.

B370001

Check that a discrimnant specification for an access discrimnant may
not appear in the declaration of a type (that is not a task or
protected type) if the word limted does not appear in the definition
of the type or in that of one of its ancestors. Check for basic cases,
including a type that is limted only due to the presence of a linmted
conmponent. Check for the generic case, where the type is derived from
a nonlimted tagged formal private type, or a formal private

extension. Check for the instance case, where the type is derived from
alimted tagged formal private type, and the correspondi ng actual is
not limted. Check in both the visible and private part of an instance,
using record and private extensions.

B370002

Check that for derived types with known discrimnant parts the parent
subtype nust be constrained; if the parent type is not tagged, each
di scrimnant of the new type nust be used in the constraint defining
t he parent subtype; and, if a discrimnant is used in the constraint
defining the parent subtype, the subtype of that discrimnant nmust be
statically conpatible with the subtype of the correspondi ng parent

di scri m nant.

B380001

Check that the name of a non-inherited discrimnant can be the sane as
the nane of a newy added conponent. Check that the nane of the
current instance of a type used to define the constraint of a conponent
may only be used as a direct_nane that is the prefix of an
attribute_reference whose result is of an access type, and that the
attribute_reference nust appear alone. Check that the name of a
non-inherited discrimnant is not allowed within the discrimnant

part.

B390001

Check that: Class wide objects are required to be initialized (whether
created by object declaration or an allocator). Aggregates of a class
wi de type are required to be qualified with a specific type when their
expected type is class-wi de. Tagged private and tagged limted private
require the full type to be a tagged record type. The attribute 'd ass
is not defined for untagged types. The Class attribute is defined for
unt agged private types whose full type is tagged, but only in the
private part of the package in which the type is decl ared.

B391001

Check that: A discrimnant on a tagged type is not allowed to have a
default. Private record extension is not allowed to be decl ared

i mediately within a subprogram decl arative region. Record extension of
a nonlinmted type does not allow |limted conponents. A record extension
may not be declared in a nested package where it is not accessible from
the declaration of its parent type. Record extension does not allow
repeating identifiers used in the parent declaration

B391002

Check that a type extension may not be declared in a generic body if
the parent type is declared outside that body.

B391003

Check that the parent type of a record extension may not be a

cl ass-wi de type. Check for the basic case. Check for the generic
case, where the parent type is the class-w de type of a formal tagged
private type or formal private extension. Check for the instance case,
where the parent type is a formal tagged private type or formal private
extension, and the corresponding actual type is a class-w de type.
Check that this rule is enforced in the visible and private part of an
i nstance.

B391004

Check that if a (non-derived) tagged type has any limted conmponents,
the reserved word limted nmust appear in its definition. Check for
basi ¢ and generic cases. Check that if the parent type of a record
extension is nonlimted, each of the conmponents of the record extension
part nust be nonlimted. Check for generic declarations and instances.

B392001

Check that a default_expression for a controlling formal paraneter of
a di spatching operation may not be statically tagged. Check that a
controlling formal parameter that is an access paraneter may not have a
def aul t _expression.

B392002

Check that a subprogram may not be a dispatching operation for two
di stinct tagged types (in a package).

B392003

Check that: A dispatching operation which overrides an inherited
subprogramis required to be subtype conformant with the inherited
subprogram The decl arati on of dispatching operations does not allow
the use of subtypes which do not statically match the first subtype of
the tagged type (in a package).

B392004

Check that: A dynamically tagged value is not allowed in an object or
expression for which the expected type is a specific tagged val ue
(unless it is a controlling operand on a di spatchi ng operation). An
access-to-classwide type is not allowed in an expression for which the
expected type is an anonynous access to specific type (unless it is a
control ling operand on a di spatchi ng operation). A call on

di spat chi ng operati on may not have both dynami cally tagged and
statically tagged controlling operands.

B392005

Check that a subprogram may not be a dispatching operation for two
different tagged types (in a child unit package).

B392006

Check that a default_expression for a controlling formal paraneter of
a di spatching operation nust be tag indeterm nate. Specifically, check
that it may not be dynam cally tagged.

B392007

Check that a dispatching operation declared in a child package which
overrides an inherited subprogramdeclared in parent is required to be
subtype conformant with the inherited subprogram

B392008

Check that a subprogramcall through a dereference of an access-to-
subprogram val ue is not considered a call on a dispatching operation
therefore, the actual paraneter in such a subprogramcall may not be
dynam cal |l y tagged. Check for the case where the access-to-subprogram
type is a generic formal type.

B392009

Check that a subprogramcall through a dereference of an access-to-
subprogram val ue is not considered a call on a dispatching operation
therefore, the actual paraneter in such a subprogramcall may not be
dynam cal | y tagged. Check that a designated profile of an
access-to-subprogram type which contains paraneters of a tagged type
does not introduce a primtive operation of the tagged type.

B393001

Check that: Objects and aggregates may not be defined or allocated of
an abstract type. The type of a conponent nmay not be abstract. A
function defined with an abstract result type nmust be decl ared
abstract. If an abstract subprogramis defined as a primtive
subprogram of a a tagged type, then the tagged type nmust be abstract.
The full type of a non-abstract private extension nmay not be abstract.
The full type of an abstract private extension may be non-abstract.

B393002

Check that incorrect orderings of reserved words in a tagged type
declaration are flagged as illegal

B393003

Check that: Bodies are not allowed for abstract subprograms. An
abstract subprogram defined using a conbinati on of concrete and
abstract types renmains abstract upon derivation fromthe concrete type.
The target of an assignnment operation may not be abstract. Subprogram
bodi es in a package body that are honographs of inherited primtive
abstract operations are illegal

B393004

Check that the actual subprogram corresponding to a generic formal
subprogram nust not be abstract.

B393005

Check that an abstract type derived froma tagged parent may override
primtive functions with controlling results as abstract. Check that
an abstract type derived froma tagged parent may not override
primtive functions with controlling results as not abstract. Check

t hat when a non-abstract or untagged type is derived froma tagged
parent with a primtive function returning a controlling result, the
function with the controlling result nust be overridden. Check that an
abstract private type may not have a primtive abstract subprogramif
the full view of the type is not abstract.

B393006

Check that, if a non-abstract type is derived froman abstract formal
private type within the generic declaration, an instantiation is
rejected if the derived type inherits abstract primtive subprograns
fromthe actual (parent) type

B3A0001

Check that objects defined to be of a general access type may not

desi gnate an object or conponent which is not defined to be aliased.
Check that a renaming of an aliased viewis also defined to be

al i ased. Check that an array slice may not be aliased. Check that the
general access nodifiers "all" and "constant™ are all owed. Check that
an object designated by an access-to-constant type object cannot be
updated through a value of that type. Check that an object designated
by a value of an access-to-variable type can be both read and

updat ed.

B3A0002

Check that subtype conformance is required for actual values of access
to subprogramtypes. Check that the node, nunber and subtype of
paranmeters must statically match. Check that the calling convention of
the value nmust not be Intrinsic. Check that correspondi ng subtypes of
the profiles must statically match. Check that a generic fornal
subprogram may not be the actual value of an access to subprogramtype
because it cannot subtype-conformw th anything.

B3A0003

Check that a designated object cannot be updated through a val ue of an
access-to-constant type. Check for the cases where the access-to-
constant type is a generic formal type, or a non-formal type decl ared
within a formal package.

B3A0004

For an array object X used as the prefix for the attributes X Access or
X Unchecked_Access, where the expected type for X Access or

X Unchecked_Access is the general access type A: Check that the

nom nal subtype of an aliased view of X nust statically match A's
designated array subtype.

B3A2002

Check that: 'Access is not defined for non-aliased objects. For

X Access of a general access type A if Ais an access-to-constant
type, X can be either a constant or a variable. For X Access of a
general access type A if Ais an access-to-variable type, X nust
denote the view of a variable. Check for cases where X is a: (a)
Formal in paraneter of a tagged type. (b) Generic formal in paraneter
of a tagged type. (c) Formal in paraneter of a conposite type with

al i ased components. (d) Function return value of a conposite type with
al i ased conponents.

B3A2003

Check that, for X Access of a general access type A the accessibility
| evel of the view denoted by X nust not be statically deeper than that
of the access type A. Check for cases where X is: (a) a view denoted
by an object declaration. (b) a view denoted by a conponent definition
(c) a formal paraneter of a tagged type.

B3A2004

Check that, for X Access of a general access type A the accessibility

| evel of the view denoted by X nust not be statically deeper than that

of the access type A. Check for cases where X is: (a) a renam ng of an
aliased view (b) a dereference of an access-to-object value. (c) a

vi ew conversion of an aliased view

B3A2005

Check that, for X Access of a general access type A the accessibility
| evel of the view denoted by X nust not be statically deeper than that
of the access type A. Check for the case where A is an anonynous
access type, and X Access is used to initialize an access discrim nant
of an object created by an allocator

B3A2006

Check that, for P Access of an access-to-subprogramtype S, the
accessibility level of the subprogram denoted by P nust not be
statically deeper than that of S.

B3A2007

Check that, for X Access of a general access type A the accessibility
| evel of the view denoted by X nust not be statically deeper than that
of A Check for cases where X Access occurs in the visible part of an
instance and X is declared in the instance itself. Check for cases
where X is: (a) a view defined by an object declaration. (b) a renam ng
of an aliased view (c) a view conversion of an aliased view

B3A2008

Check that, for X Access of a general access type A the accessibility
| evel of the view denoted by X nust not be statically deeper than that
of A Check for cases where X Access occurs in the private part of an
instance and X is declared in the instance itself. Check for cases
where X is: (a) a view defined by an object declaration. (b) a view
defined by a conponent definition. (c) a dereference of an

access-t o-obj ect val ue.

B3A2009

Check that, for P Access of an access-to-subprogramtype S, if the
subprogram denoted by P is declared within a generic body, S nust also
be declared within the generic body.

B3A2010

Check that, for P Access of an access-to-subprogramtype S, the
accessibility level of the subprogram denoted by P nust not be
statically deeper than that of S. Check for cases where P' Access occurs
in the visible and private part of an instance.

B3A2011

Check that, for X Access of a general access type A the accessibility
| evel of the view denoted by X nust not be statically deeper than that

of A Check for cases where X Access occurs in the private part of an
instance and X i s passed as an actual during instantiation. Check for
cases where X is: (a) a view defined by an object declaration. (b) a

renam ng of an aliased view (c) a view conversion of an aliased view

B3A2012

Check that, for X Access of a general access type A the accessibility
| evel of the view denoted by X nust not be statically deeper than that
of A Check for cases where X Access occurs in the visible part of an
instance and X is passed as an actual during instantiation. Check for
cases where X is: (a) a view defined by an object declaration. (b) a
vi ew denoted by a conponent definition. (c) a dereference of an
access-t o-obj ect val ue.

B3A2013

Check that, for X Access of a general access type A the accessibility
| evel of the view denoted by X nust not be statically deeper than that
of the access type A Check for cases where X is: (a) a current
instance of a limted type. (b) a current instance of a limted type in
a type conversion.

B3A2014

Check that, for X Access of a general access type A if the designated
type is tagged, the type of the view denoted by X nmust be covered by

t he designated type. Check that if the designated type is not tagged,
the type of the view nust be the sane, and either A s designated
subtype nmust statically match the nom nal subtype of the view, or the
desi gnat ed subtype nmust be discrimnated and unconstr ai ned.

B3A2015

Check that, for X Access of a general access type A the view denoted
by X nust not be a subcomponent that depends on discrimnants of a

vari abl e whose nom nal subtype is unconstrained, unless this subtype is
indefinite, or the variable is aliased. Check that, for a renam ng of
an object, the renaned entity nust not be a subconponent that depends
on discrimnants of a variable whose nom nal subtype is unconstrained,
unless this subtype is indefinite, or the variable is aliased. Check
that if the view denoted by X is that of a subconponent of an aliased
conposite object, the word aliased nust appear in the subconponent's
conponent definition. Check for objects which are declared aliased,
objects created by an allocator, and formal paraneters of a tagged

type.
B430001

Check that an aggregate may not be of a class-w de type. Check that
"null record" may appear as a record conmponent association list in
record aggregates and extension aggregates. Check that if no components
are needed in a record conponent association list, "null record" mnust
appear, and that if conponents are needed, "null record" must not
appear.

B460001

Check that if the target type of a type conversion is a general access
type, the accessibility |level of the operand type nust not be
statically deeper than that of the target type. Check for cases where
the operand is: (a) a stand-al one access object. (b) a fornal
paranmeter. (c) an access discrimnant.

B460002

Check that if the target type of a type conversion is a general access
type, the accessibility |level of the operand type nust not be
statically deeper than that of the target type. Check for cases where
the type conversion occurs in the visible or private part of an

i nstance.

B460004

Check that if the target type of a type conversion is tagged, the
operand type nmust be covered by or descended fromthe target type, or
t he operand type nust be a class-w de type that covers the target
type. Check that if the target designated type of a general access
type conversion is tagged, the operand designated type nmust be
convertible to the target designated type

B480001

Check that if the subtype indication of an uninitialized allocator
specifies an access type, no explicit constraint is permtted.

B490001

Check that the following are static expressions: (a) A nuneric litera
whose expected type is not a static subtype. (b) A string literal of a
static string subtype. (c) X First, X Last, or X Length, where X
statically denotes a statically constrained array object or array
subtype. (d) A type conversion whose subtype mark denotes a static
scal ar subtype, and whose operand is a static expression. (e) A
menbership test whose sinple expression is a static expression, and
whose range is a static range or whose subtype mark denotes a static
subtype. (f) A short-circuit control formboth of whose relations are
static expressions. Check that the Range attribute of a statically
constrained array subtype or object gives a static range. Check that a
predefi ned concat enati on operator whose result type is a string type is
a static function. Check that a static expressionis illegal if its
eval uation fails a | anguage-defi ned check other than Overfl ow Check,
even if it is part of a larger static expression. Check that

B490002

Check that a static string expression that is the result of a
catenation is illegal if it has length greater than that permtted by
the expected type. Check that it is illegal to assign a null string

literal to an object whose | ower bound is equal to the | ower bound of
t he base range of the index type.

B610001

Check that access paraneters may have default expressions. Check that
t he expected type of the actual access paraneter is the nom nal subtype
of the formal anonynous access paraneter.

B641001

Check that the actual parameter corresponding to a formal paraneter of
node in out or out nmust denote a variable; in particular, that it may
not be a dereference of an access-to-constant value. Check for the
cases where the value is of a generic formal access-to-constant type,
or of a non-formal access-to-constant type declared within a fornal
package.

B660001

Check that the "=" operator may be overl oaded for non-limted private

types. Check that explicit overloadings of "/=" may not have a Bool ean
result. Check that the result of an explicitly declared "=" operator

may be ot her than Bool ean. Check that an equality operator may renane
a function other than an equality operator

B660002

Check that the "=" operator may be overl oaded for non-limted types.
Check that explicit overloadings of "/=" may not have a Bool ean result.
Check that the result of an explicitly declared "=" operator may be

ot her than Bool ean. Check that an equality operator may renane a
function other than an equality operator. Check that a decl aration of
"=" whose result type is not Bool ean does not inplicitly declare a "/="
operation that gives the conplenentary result.

B7200010

See B7200016. A.

B7200011

See B7200016. A.

B7200012

See B7200016. A.

B7200013

See B7200016. A.

B7200014

See B7200016. A.

B7200015

See B7200016. A.

B7200016

Check that if a library package declaration or library generic package
decl aration does not require a body, that a body is not allowed.

Check that pragma El aborate Body can be used to require a body even if
not ot herw se required.

B730001

Check that: Full type of a tagged private type nust be a tagged type.
This means that the full type nust either be declared using a tagged
record definition, or else derived fromsonme other tagged type, in
which <case it nmust include a record_extension_part. Full type of a
nonlimted tagged private type nust be a nonlimted tagged type. Ful
type of a limted tagged private type nmust be a limted tagged type.
A tagged record type nust be a limted type if one of its record
components is limted. A record extension nust be extended from a
limted parent type if one of its record conponents is limted.

B730002

Check that a private extension is limted if its ancestor type is
l[imted. Check that if a partial viewis nonlimted, the full view nust
be nonlimted. Check that if a partial view of a tagged type is
l[imted, the full viewnust be limted, but that if a partial view of
an untagged type is limted, the full view my be either Iimted or
nonlimted. Check that the full view of a private extension nmust be
derived, either directly or indirectly, fromthe ancestor type. Check
that the ancestor type of a private extension nmust be a specific type.

B730003

Check that if the partial view of a private type is tagged, the ful

vi ew nust be tagged. Check that if the partial view of a private type
is untagged, the full view may be tagged or untagged, but that if the
partial viewis untagged and the full view is tagged, no derivatives of
the partial view are allowed within the i medi ate scope of the parti al
view. Check that derivatives of the full view are all owed.

B730004

Check that if a public child is "with"ed by a client, the client does
not have visibility into the private part of the child s parent. Check
that the full view of a private type defined in a parent and extended
inachildis not visible outside the child.

B730005

Check that the ancestor type of a private extension may not be a

cl ass-wi de type. Check for the basic case. Check for the generic
case, where the ancestor type is the class-wi de type of a formal tagged
private type or formal private extension. Check for the instance case,
where the ancestor type is a formal (tagged or untagged) private type
or formal private extension, and the corresponding actual type is a

cl ass-wide type. Verify this rule in the visible and private part of an
instance. In the private part, check specifically for the case where
the parents of the partial and full views are different.

B731A01

Check that the inherited primtive subprograns of a derived type
definition are inplicitly declared at the earliest place within the

i medi ate scope of the type declaration (but after the type

decl aration) where the corresponding declaration fromthe parent is
visible. Check that, within its scope, the full view determnm nes which
conmponents are visible. Check for the cases where the parent is a
partial view (tagged private type) declared in a package, and the
derived type is declared in: the visible part of a public child unit a
package nested within the visible part of a public child unit

B731A02

Check that the inherited prinmtive subprogranms of a derived type are
inplicitly declared at the earliest place within the i medi ate scope of
the type declaration (but after the type declaration) where the
correspondi ng declaration fromthe parent is visible. Check that,
within its scope, the full view deternm nes which conmponents are
visible. Check for the cases where the parent is a partial view
(tagged private type) declared in a package, and the derived type is
declared in: the visible part of a private child unit a package nested
within the visible part of a private child unit a non-child package,
and is further derived fromin a child unit a package nested within the
visible part of a public child unit

B740001

Check that a deferred constant may be declared of any type and that, if
it is completed by a full constant declaration, its conpletion mnust
occur immediately within the private part of the sane package. Check
that the deferred and full constants nust have the sane type.

B810001

Check that a choice_paraneter_specification in an exception handl er

hi des outer declarations with the sane nane. Check that two choice
paranmeters w thin exception handlers of the sane

handl ed_sequence_of _statenments can have the sanme nanme. Check that a
choi ce_paraneter_specification in an exception handler is not visible
out si de the handl er

B830001

Check that two honographs are not allowed to be declared explicitly

i mediately within the sane declarative region. Check for cases of
child package nanes. Check for cases of dispatching operations declared
in the visible part of an instance.

B840001

Check that the nane in a use type clause nust denote a subtype. Check
that only the primtive operators of the type determ ned by the subtype
mark in a use type clause are use-visible (in particular, that the
primtive operators of no other type declared in the same package are
use-visible). Check that the scope of a use type clause in the private
part of a library unit does not include the visible part of any public
descendant of that library unit.

B940001

Check that a protected_el ement_declaration within the private part of a
protected type nust be a conponent_declaration (if it is not a

prot ect ed_operati on_declaration). Specifically: an anonynous array is
not al | owed

B940002

Check that a protected_el ement_declaration within the private part of a
protected type nust be a conponent_declaration (if it is not a

prot ect ed_operati on_declaration). Specifically: a constant conponent is
not allowed a type declaration is not allowed

B940003

Check that protected declarations (in a nornmal procedure) require
conpletion by a protected body and vice versa.

B940004

Check that protected declarations (in a package) require conpletion by
a protected body and vice versa.

B940005

Check the visibility of |ocal subprograms and the private parts of
protected objects

B940006

Check that component declarations are only allowed in the private part
of protected objects

B940007

Check that component declarations are not allowed in the body of
protected objects

B951001

Check that the body of a protected function cannot have an interna
call to a protected procedure.

B952001

Check that the nane that denotes the formal paraneter of an entry body
is not allowed within the entry barrier

B952002

Check that the body of a protected entry nust have an entry barrier
Check that if an entry identifier appears at the end of an entry body
it repeats the defining identifier of the entry or the entry famly

B952003

Check that, in the body of a protected entry, the
entry_index_specification nmust be enclosed in parentheses.

B952004

Check that an entry_declaration in a task declaration cannot contain a
specification for an access paraneter. Check that an accept_stat enent
is not allowed within an asynchronous_sel ect inner to the encl osing

t ask_body.

B954001

Check for error if requeue is not type conformant with the call or if
requeue has parameters. Check requeues wi th/w thout abort.

B954003

Check that the accessibility level of the target task object of a
requeue_statenent is not equal to or statically deeper than any

encl osi ng accept _statenent of the task unit. Check that for a requeue
statenment of an entry_body the target object is either a fornal
paranmeter of the entry body or the accessibility Ievel of the target
object is not statically deeper that that of the entry_declaration

B954004

Check that a requeue_statement is only allowed directly within an
entry_body or accept_statenent.

B960001

Check that an argument to the delay_until _statement must have type
Calendar. Time. |In particular check that the del ay_expressions of
Duration, Float and Integer are flagged as errors

BA11001

Check that in the visible part of a public child, the private
decl arations of the parent package are not visible.

BA11002

Check that the private declarations of the parent are not visible for a
formal paraneter list or result type of a public child.

BA11003

Check that a child library unit may not have anything other than a
library package or generic library package as its parent unit. Check
that nested units cannot have child units. Check that child of a
generi c package may not be anything other than a generic unit or a
renam ng of some other child of the same generic unit. Check that a
child of an instance of a generic package nust be an instance or a
renaming of a library unit.

BA11004

Check that a child library subprogramis not primtive subprogram(i.e
is not inherited by types derived froma type declared in the parent).

BA11005

Check that a parent body cannot declare a honograph of the child when a
child unit is included in the context clause of the parent body.

BA11007

Check that a child library subprogrammay not override a user-defined
primtive subprogram

BA11008

Check that an instance of a child of a generic package that is not part
of a formal package declaration and that is a child of an instance of

t he generic package is not allowed outside the declarative region of

t he generic package itself. Check that an instance of a generic does
not inherit children fromthe generic. Check that a child of an

i nstance of a generic package nmust be an instance.

BA11009

Check that if the generic being renaned is itself a child of a generic
package P, the renam ng nmust occur in a place that is within the

decl arative region of P, which includes the body, the children (and
descendant ...), and the subunits of P

BA11010

Check that a library unit renam ng declaration may not be used to
rename a physically nested package, a physically nested subprogram or
a subunit.

BA11011

Check that the renanmed entity nust be a generic unit of the appropriate
kind. Check that in a library_unit_renanm ng_declaration, the (old) nane
must denote a library_ item Check that a generic renamng of a child of
a parent generic package is not allowed outside the declarative region
of the parent generic. Check for subsequent renam ng decl arati ons of
public children

BA11012

Check that in a library_unit_renam ng_declaration, the (old) nanme nust
denote a library_item Check that a generic renaming of a child of a
parent generic package is not allowed outside the declarative region of
the parent generic. Check that a library unit nmust be a private
descendent of the parent of a private child when the private child has
been renanmed and the nane denoting the renam ng has been used in a with
cl ause. Check for subsequent renam ng declarations of private

chil dren.

BA12001

Check that the with-clause of a public child of some library unit
cannot include a private child of the sane ancestor

BA12002

Check that the with-clause of a public second | evel descendant of sone
library unit cannot include a private descendant of the same ancestor

BA12003

Check that the with-clause of the public descendant of a private
descendant of a library unit cannot include any private descendants of
its (imediate) parent.

BA12004

Check that a with-clause of a library unit may not include the private
child or any descendant of a private child of sone other library unit.

BA12005

Check that the with-clause in the body of a (public or private)
descendant of a library unit cannot include a private child of a
different library unit.

BA12007

Check that the rename of a child unit (i.e. alibrary unit with an
expanded nane) does not make decl arations within ancestors of the child
visible. Check that a parent unit nanme (in the defining declaration of
a child unit) does not designate a renam ng declaration

BA12008

Check that a child unit may not be "with"ed using only its sinple nane.
Check that a child unit may not be "with"ed using any abbreviated
version of its full expanded nanme (e.g., grandparent.child rather than
gr andpar ent . parent. chil d)

BA13B01

Check that a separate subprogramdeclared in a private child unit of a
public parent does not have visibility into the private part of the
package on which its parent depends or the private part of its
parent's public sibling.

BA13B02

Check that a separate subprogramdeclared in a public child unit of a
private parent does not have visibility into the private part of the
package on which its parent depends or the private part of its
parent's public sibling.

BA15001

Check that configuration pragmas nust appear before the first

conpilation unit of a conpilation
BA21001

Check that each of the follow ng constructs is illegal within a library
package decl aration to which a pragma Preel aborate applies: (a) A cal
to a nonstatic function. (b) A primary that is a nane of an object,
including within the default expression for a default-initialized
conmponent, if the nane is not a static expression and does not
statically denote a discrimnant of an enclosing type. (c) A

decl aration of an object of a descendant of a task type. (d) A

decl aration of an object of a descendant of a controlled type w thout
an initialization expression. (e) A declaration of an object with a
conponent of a descendant of a private type (outside the scope of the
full view without an initialization expression. (f) An extension
aggregate with an ancestor subtype mark denoting a subtype of a
control | ed type. Check that each of the follow ng constructs is |ega
within a |library package declaration to which a pragna Preel aborate
applies: (g) Acall to a static function. (h) Aprimary that is a nane
of an ob

BA21002

Check that each of the followi ng constructs is illegal wthin the body
of a library package to which a pragma Pure applies: (a) A statenent
other than a null statement. (b) A primary that is a nanme of an object,
if the name is not a static expression and does not statically denote a
di scrimnant of an enclosing type. (c) A declaration of an object of a
descendant of a protected type with entry declarations. (d) A
declaration of a variable, with or without an initialization
expression, outside of a subprogram generic subprogram task unit, or
protected unit. (e) A declaration of a naned access type outside of a
subprogram generic subprogram task unit, or protected unit. (f) An
ext ensi on aggregate with an ancestor subtype mark denoting a subtype of
a private extension. (g) A declaration of a (constant) object which
causes the evaluation of a default expression that will call a
user - defined function. Check that each of the follow ng constructs is
legal within the body of a library package to which a prag

BA210030

Check that all conpilation units of a preelaborated library unit nust
depend senmantically only on conpilation units of other preel aborated
library units. Check that all conpilation units of a declared-pure
library unit nmust depend semantically only on conpilation units of
other library units which are declared pure. Check that a

preel aborated unit nmay have a non-preel aborable child unit, but not a
non- pr eel abor abl e subunit.

BA210031

Check that all conpilation units of a preelaborated library unit mnust
depend senmantically only on conpilation units of other preel aborated
library units. Check that all conpilation units of a declared-pure
library unit nmust depend semantically only on conpilation units of
other library units which are declared pure. Check that a

preel aborated unit nmay have a non-preel aborable child unit, but not a

non- pr eel abor abl e subunit.
BA210032

Check that all conpilation units of a preelaborated library unit mnust
depend senantically only on conpilation units of other preel aborated
library units. Check that all conpilation units of a declared-pure
library unit nmust depend semantically only on conpilation units of
other library units which are declared pure. Check that a

preel aborated unit nmay have a non-preel aborable child unit, but not a
non- pr eel abor abl e subunit.

BA210033

Check that all conpilation units of a preelaborated library unit mnust
depend senmantically only on conpilation units of other preel aborated
library units. Check that all conpilation units of a declared-pure
library unit nust depend semantically only on conpilation units of
other library units which are declared pure. Check that a

preel aborated unit nmay have a non-preel aborable child unit, but not a
non- pr eel abor abl e subunit.

BA210034

Check that all conpilation units of a preelaborated library unit mnust
depend senmantically only on conpilation units of other preel aborated
library units. Check that all conpilation units of a declared-pure
library unit nmust depend semantically only on conpilation units of
other library units which are declared pure. Check that a

preel aborated unit nmay have a non-preel aborable child unit, but not a
non- pr eel abor abl e subunit.

BA210035

Check that all conpilation units of a preelaborated library unit mnust
depend senantically only on conpilation units of other preel aborated
library units. Check that all conpilation units of a declared-pure
library unit nust depend semantically only on conpilation units of
other library units which are declared pure. Check that a

preel aborated unit nmay have a non-preel aborable child unit, but not a
non- pr eel abor abl e subunit.

BA21A01

Check that an instantiation of a generic |library package declaration to
whi ch a pragma Preel aborate applies is illegal if the instantiation
occurs within a library package declaration to which a pragna

Preel aborate al so applies, and the generic library package contains any
of the followi ng constructs in its visible or private part (such that
the construct is evaluated upon instantiation): (a) Acall to a
nonstatic function. (b) Acall to a formal function, if the
correspondi ng actual is a nonstatic function. (c) Aprimary that is a
nane of an object, if the nane is not a static expression and does not
statically denote a discrimnant of an enclosing type. (d) A

decl aration of an object of a descendant of a protected type with entry
declarations. (e) A declaration of an object of a descendant of a
controlled type without an initialization expression. (f) A declaration

of an object of a descendant of a private type (outside the scope of
the full view) without an initialization expression. (g) A declaration
of

BA21A02

Check that the body corresponding to a generic library package
declaration to which a pragma Preel aborate applies is illegal if it
contains any of the followi ng constructs (if the construct would be

el aborated upon instantiation): (a) A statement other than a nul
statement. (b) A call to a nonstatic function. (c) Acall to a fornal
function. (d) Aprimary that is a nane of an object, including within
the default expression for a default-initialized conmponent, if the name
is not a static expression and does not statically denote a

di scriminant of an enclosing type. (e) A declaration of an object of a
descendant of a task type. (f) A declaration of an object with a
conponent of a descendant of a controlled type wthout an
initialization expression. (g) A declaration of an object with a
conponent of a descendant of a private type (outside the scope of the
full view without an initialization expression. (h) A declaration of
an object of a descendant of a private extension (outside the scope of
the full view

BB10001

Check that separate exception handlers for Constraint_Error and
Nuneric_Error are not allowed within a handl ed sequence of
statenents.

BB20001

Check that an exception_nanme of a choice cannot denote an exception
declared in a generic formal package.

BC30001

Check that, in the visible part of an instance, legality rules are
enforced at conpile tine of the generic instantiation, and not enforced
in other parts of the instance. Specifically, check that, for a tagged
actual type passed to a non-tagged formal private type, a tagged type
may not be derived fromthe actual in the visible part of an instance,
but may be derived in the private part or body. Check that a non-tagged
type derived froma tagged parent type in the private part of an
instance is not treated as tagged outside the instance.

BC40001

Check that the type of a generic formal object of node in nust not be
[imted.

BC40002

Check that, for a generic formal object of node in: If the fornal

object is of tagged type T, the type of the actual nust be T. If the
formal object is of type T Class, the type of the actual nust be a type
in that class. Check that, for a generic formal object of node in out:
If the formal object is of tagged type T, the type of the actual nust

be T. If the formal object is of type T'dass, the type of the actua
must be T d ass.

BC50001

Check that, for a generic formal derived type, the actual nust be in
the class rooted at the ancestor subtype. Check for scalar, array, and
access types.

BC50002

Check that, for a generic formal derived type, the actual nust be in
the class rooted at the ancestor subtype. Check for record and tagged

types.
BC50003

Check that the actual corresponding to a formal signed integer type may
not be a nodul ar type. Check that the actual corresponding to a formal
nmodul ar type may not be a signed integer type.

BC50004

Check that the actual corresponding to a formal ordinary fixed point
type may not be a decimal fixed point type. Check that the actua
corresponding to a formal decinmal fixed point type may not be a
ordinary fixed point type.

BC51002

Check that if a generic formal derived subtype is definite, the actua
subtype nust not be indefinite. Check in cases where the formal subtype
appears in contexts where an indefinite subtype would be | egal

BC51003

Check that, for a generic formal derived type with no discrim nant
part, if the ancestor subtype is constrained, the actual subtype nust
be constrained and nmust be statically conpatible with the ancestor
Check for the case where both constraints are static and the actua
subtype is defined by a subtype declaration

BC51004

Check that, for a generic formal derived type with no discrim nant
part, if the ancestor subtype is constrained, the actual subtype nust
be constrained and nmust be statically conpatible with the ancestor
Check for the case where both constraints are static and the actua
subtype is defined by a derived type decl aration

BC51005

Check that, for a generic formal derived type with no discrim nant
part, if the ancestor subtype is an unconstrai ned access or record
subtype, the actual subtype must be unconstr ai ned.

BC51006

Check that, for a generic formal derived type with no discrim nant
part, if the ancestor subtype is an unconstrained array or tagged
subtype, the actual subtype nmust be unconstr ai ned.

BC51007

Check that, for a generic formal derived type with no discrim nant
part, if the ancestor subtype is an unconstrained discrim nated
subtype, the actual type nmust have the same nunber of discrimnants,
and each discrimnant of the actual nust correspond to a discrim nant
of the ancestor.

BC51011

Check that, for a formal private type with a known di scrim nant part,
t he subtype of each discrimnant of the actual type nust statically
mat ch the subtype of the correspondi ng discrimnant of the fornal

type.
BC51012

Check that, if the reserved word "abstract"” does not appear in the
declaration of a formal derived type, the actual type nmust not be an
abstract type. Check that, if the ancestor type is abstract, and the
formal derived type is not, neither the ancestor type nor its abstract
descendants may be passed as actuals. Check that, if the formal derived
type is abstract, then the following entities that are of the formal
type are illegal: a conponent, an object created by an object
declaration or an allocator, a generic formal object of node in, the
the result type of a non-abstract function

BC51013

Check that, if the reserved word "abstract” does not appear in the
declaration of a formal private type, the actual type nmust not be an
abstract type. Check that, if the formal private type is abstract, then
the following entities that are of the fornmal type are illegal: a
conponent, an object created by an object declaration or an all ocator

a generic formal object of node in, the result type of a non-abstract
functi on.

BC51015

Check that if the actual type corresponding to a non-tagged formal
private type is tagged, an instance is illegal if a (non-tagged)
derived type is declared in the visible part. Check that an instance is
legal if the derived type is declared in the private part or in the
body.

BC51016

Check that, if the reserved word "abstract" appears in the declaration
of a formal private type, the reserved word "tagged" nust al so appear

Check that, if the reserved word "abstract" appears in the declaration
of a formal derived type, the reserved words "with private" nust al so

appear. Check that a tagged type derived froma non-tagged generic

formal private or derived type is illegal
BC51017

Check that alternative orderings of reserved words in a formal private
type declaration are illegal

BC51018

Check that alternative orderings of reserved words in a fornmal (tagged)
derived type declaration are illegal

BC51019

Check that a generic formal derived tagged type is a private extension
Specifically, check that, for a generic fornal derived type whose
ancestor type has a primtive subprogramwhich is a function with a
controlling result, the function nust be overridden for non-abstract
record extensions of the fornmal derived type. Check that the function
need not be overridden for record extensions, nor for private

ext ensi ons, although for non-abstract private extensions it must be
overridden for the corresponding full type.

BC51020

Check that, for an abstract generic formal derived type whose ancestor
type has an abstract primtive subprogram non-abstract record and
private extensions of the formal derived type nust override the
subprogram Check that abstract record and private extensions need not
override the subprogram Check that, for a non-abstract generic formal
derived type whose ancestor type has an abstract primtive subprogram
record and private extensions of the formal derived type need not
override the subprogram

BC51B01

Check that if a generic formal private subtype is definite, the actua
subtype nust not be indefinite, even if the formal subtype appears only
in contexts where an indefinite subtype would be | egal

BC51B02

Check that the ancestor of a formal derived type may not be cl ass-

wi de. Check that a formal derived type nmay not have a known

di scrimnant part. Check that if a generic formal private or derived
subtype is indefinite, it nmust not appear in a context which requires a
definite subtype

BC51C01

Check that the actual type passed to an abstract generic formal derived
type may be either abstract or non-abstract, as may record and private
extensions of the formal type. Check that, for a non-abstract type
derived froman abstract formal derived type, all abstract prinmtive
subprograns inherited fromthe actual type nust be overridden in the

i nstance.

BC51C02

Check that the actual type passed to an abstract generic formal private
type may be either abstract or non-abstract, as may record and private
extensions of the formal type. Check that, for a non-abstract type
derived froman abstract formal private type, all abstract prinmtive
subprograns inherited fromthe actual type nust be overridden in the

i nstance.

BC53001

Check that the index subtypes of an unconstrained formal array subtype
and its correspondi ng actual subtype nust statically match. Check that
the i ndex ranges of a constrained formal array subtype and its
correspondi ng actual subtype nust statically match. Check that the
conponent subtypes of a formal array type and its correspondi ng actua
type nust statically match.

BC53002

Check that if a formal array type has aliased conponents, the
correspondi ng actual type must al so have aliased conponents. Check that
if a formal array type does not have aliased conponents, the
correspondi ng actual type may neverthel ess have aliased conponents.

BC54001

Check that if a generic formal access type contains the general access
nodi fier "constant," the actual nust be an access-to-constant type.
Check that if a generic formal access type contains the general access
nodi fier "all," the actual nust be a general access-to-variable type.
Check that if a generic formal access type contains no general access
nodifiers and is not a formal access-to-subprogramtype, the actua
must be a general or pool-specific access-to-variable type. Check that
if a generic formal access type is a formal access-to-subprogramtype,
t he actual nust be an access-to-subprogramtype.

BC54002

Check that, for a formal access-to-subprogram subtype, the designated
profiles of the formal and actual nust be nobde-conformant. Check that
if the calling convention of the formal is not protected, the calling
convention of the actual nust not be protected.

BC54003

Check that, for a formal access-to-subprogram subtype, the
correspondi ng parameter and result types of the designated profiles of
the formal and actual nust be the same. Specifically, check for the
case where the paraneters in the profile of the formal type are

t hensel ves formal types.

BC54A01
Check that, for a formal access-to-subprogram subtype whose profile

contai ns access paraneters, the designated subtypes of the
correspondi ng access paraneters in the formal and actual profiles nust

statically match. Check cases where the designated subtype is an
el ementary subtype

BC54A02

Check that, for a formal access-to-subprogram subtype whose profile
contai ns access paraneters, the designated subtypes of the
correspondi ng access paraneters in the formal and actual profiles nust
statically match. Check cases where the designated subtype is a
conposite subtype

BC54A03

Check that, for a formal access-to-subprogram subtype whose profile
contai ns access paraneters, the designated subtypes of the
correspondi ng access paraneters in the formal and actual profiles nust
statically match. Check cases where the designated subtype is a generic
formal subtype

BC54A04

Check that, for a formal access-to-object type, the designated subtypes
of the formal and actual nust statically match. Check for the case
where the access-to-object type is a general access-to-constant type.

BC54A05

Check that, for a formal access-to-object type, the designated subtypes
of the formal and actual nust statically match. Check for the case
where the access-to-object type is a general access-to-variable type.

BC54A06

Check that, for a formal access-to-object type, the designated subtypes
of the formal and actual nust statically match. Check for the case
where the access-to-object type is a pool -specific access-to-variable

type.
BC70001

Check that the actual corresponding to a generic formal package nust be
an instance of the tenplate for the formal package. Check for the case
where the fornmal package is declared in a library- |level generic
package.

BC70002

Check that the actual corresponding to a generic formal package nust be
an instance of the tenplate for the formal package. Check for the case
where the fornmal package is declared in a library- |level generic

subpr ogram

BC70003
Check that the tenplate in a formal package declaration nust be a

generi c package. Check for the case where the formal package is
declared in a library-level generic package.

BC70004

Check that the tenplate in a formal package declaration nust be a
generi c package. Check for the case where the formal package is
declared in a library-level generic subprogram

BC70005

Check that if a formal package actual part is not (<>), the generic
formal part of the tenplate is not part of the visible part of the
formal package. Check for the case where the formal package is decl ared
inalibrary-level generic package.

BC70006

Check that if a formal package actual part is not (<>), the generic
formal part of the tenplate is not part of the visible part of the
formal package. Check for the case where the formal package is decl ared
inalibrary-level generic subprogram

BC70007

Check that an actual instance of a generic formal package is rejected
if its actuals do not match the corresponding actuals in the formal
package actual part. Specifically, check that the follow ng cases are
illegal: For a formal object of node IN: The actuals are both static
expressions but do not have the sane value. The actuals are not both
static expressions and do not statically denote the same constant. The
actuals are not both the literal null.

BC70008

Check that the actual corresponding to a generic formal package nust be
an instance of the tenplate for the formal package. Check for the case
where the formal package is declared in a library- |level generic
subprogram Check for the case where the actual s have been renaned.
Check that a generic renam ng decl aration which renanmes the tenplate
may be used in instantiations of the tenplate.

BC70009

Check that an actual instance of a generic formal package is rejected
if its actuals do not match the corresponding actuals in the formal
package actual part. Specifically, check that, for formal subprograns
and packages, the actuals mnmust statically denote the same entity.

BC70010

Check that an actual instance of a generic formal package is rejected
if its actuals do not match the correspondi ng actuals in the formal
package actual part. Specifically, check that, for formal subtypes, the
actual s nmust denote statically matching subtypes.

BDBOAO1

Check that Storage_Size may not be specified for a derived

access_to_object type. Check that Storage_Pool nmay not be specified
for a derived access_to_object type. Check that type Root_Storage Poo
is abstract, and requires overriding definitions for procedures

Al l ocate, Deall ocate and function Storage_Size. Check that
Storage_Si ze may not be specified for a given access type if
Storage_Pool is specified for it.

BDD2001

Check that Stream 1O attributes '"Input, 'Qutput, 'dass'Input, and
" ass' Qutput cannot be used with limted types, including conposite
types containing limted conponents.

BDEOOO1

Check that the explicit declaration of a primtive subprogramof a
tagged type must occur before the type is frozen. Check for cases
where the tagged type is frozen by: The declaration of a record
extension (check also that a private extension does not freeze the
parent type, and that freezing is deferred until the full type
declaration). The declaration of an object of the type. An expression
that is an allocator, the type of which designates the tagged type
Check that the tagged type is not frozen by a nonstatic expression

that is part of a default expression

BDEO002

Check that the explicit declaration of a primtive subprogramof a

t agged type must occur before the type is frozen. Check for cases
where the conponent type of a conposite type is a tagged type, and the
tagged type is frozen by: The declaration of an object of the
conposite type. An expression that is an allocator, the type of which
designates the conposite type. An expression that is an aggregate,

whi ch contains a conposite value of the conposite type. Check that the
tagged type is not frozen by a nonstatic expression that is part of a
defaul t expression.

BDEOOO3

Check that the explicit declaration of a primtive subprogramof a
tagged type must occur before the type is frozen. Check for cases
where the tagged type is frozen by the conpletion of a deferred
constant declaration. Check also that the deferred constant
declaration itself does not freeze the type. Check that a deferred
constant is conpleted before the constant is frozen

BDEO00O4

Check that the explicit declaration of a primtive subprogramof a
tagged type must occur before the type is frozen. Check for cases
where the tagged type is frozen by the occurrence of a generic
instantiation. Check that the tagged type is not frozen by a nonstatic
expression that is a default nane.

BDEOOO5

Check that the explicit declaration of a primtive subprogramof a

tagged type must occur before the type is frozen. Check for cases
where the primtive subprogram occurs in a package body.

BDEOOO6

Check that a representation clause for a type nust occur before the
type is frozen. Check for cases where the type is frozen by: The

decl aration of an object of the type. The declaration of an object wth
a conponent of the type. The declaration of a record extension of the
type. An expression that is an allocator, the type of which designates
t he type.

BDEOOO7

Check that a representation clause for an object or a type nust occur
before the object or type is frozen. Check for cases where the object
or type is frozen by the occurrence of a generic instantiation

Check that an instance body does not cause freezing of entities

decl ared before it within the sanme decl arative part.

BDEOOO8

Check that a representation clause for a type nust occur before the
type is frozen. Check for cases where the type is frozen by a static
expression or a nonstatic expression which is not a default expression
Check that a nonstatic expression that is part of a default expression
does not cause freezing. Check for cases of subprogram renam ng

BXA8001

Check that Append_File node has not been added to package Direct_IQO
APPLI CABI LITY CRITERIA: Applicable to all inplementations that support
Direct | O operations.

BXAC001

Check that a streamis linmted and may not be the target of an
assi gnment .

BXAC002

Check that the Set Position procedure and Position function are not
predefined in Stream 1O Check that the type File_Ofset is not
predefined in Stream 1O Check that the Set_ | ndex procedure and | ndex
function are predefined in Stream|Q Check that the type
Positive_Count is predefined in Stream 1O Check that the appropriate
paranmeter types are required for the Stream| O procedure Set_I ndex.

BXAC003

Check that an attenpt to use the 'Wite or 'Read type attribute val ues
to wite or read a Stream|IOfile is rejected when a streamfile
object is provided as the paraneter, rather than an stream access

val ue. Check that the correct type 'Wite or 'Read attribute value is
requi red when witing or reading data to/froma stream Check that an
attenpt to use the '"Wite or 'Read type attribute values as attributes
of an object rather than a type are rejected by the conpiler

BXAC004

Check that an attribute reference for the Stream 1O attributes 'Wite
and 'Read is illegal if the type is limted, including task types and
conposite types containing limted conponents.

BXAC0O05

Check that Text IO File_Type objects cannot be used in conjunction wth
streamoriented attributes 'Wite and ' Read. Check that
Streans. Stream | O Fil e_Type objects cannot be used in Text_ IO file data
transfer operations. Check that stream access objects cannot be used as
file object paraneters of Text | QO Put and Text | QO Get procedures. Check
that Put and Get are not defined as type attributes for use wth
streamfiles. Check that the package Stream Support, which was
originally defined in the 9X Mapping Specification and Ada 9X ILS, but
whi ch has been changed to package Streams in AARM 3.0, is not included
in the conpilation systempredefined library. (Note: This portion of
the objective can be deleted in the future.)

BXC3001

Check that pragmas Interrupt_Handl er and Attach_Handl er are

recogni zed. Check that the handler is a parameterless protected
procedure; check that the pragmas are allowed only inmediately in a
protected definition. Check that Attach_Handler will accept an
expression only of type Interrupts.Interrupt_ID.

BXC3002

Check that pragmas Interrupt_Handl er and Attach_Handl er are recogni zed
for protected types. Check that the pragmas are allowed only
imediately in a protected definition. Check that a protected
declaration for Attach_Handl er must be library level. Check that a
protected type declaration for Interrupt_Handl er nust be library |evel
and that any object declaration of that type nust be library |evel.

BXC5001

Check that pragma Di scard_Nanes may only be declared inmediately within
a declarative part, imediately within a package specification or as a
configuration pragma. Check that its paraneter, if present, may denote
only a non-derived enuneration subtype, tagged subtype or an

exception.

BXC6001

Check that the nane referenced in pragnas Atom c and Vol atile may only
be an object, a non-inherited conponent or a full type. Check that the
nane referenced in Atom c_Conponents or Vol atil e_Conponents nust be an
array type or an object of an anonynous array type.

BXC6002

Check that if an atomic object is used as an actual for a generic
formal object of node in out, the type of the generic formal object

must be atomic. Check that if the prefix of 'Access denotes an atomc
obj ect (including a conponent), the designated type of the resulting
access type nust be atomc

BXC6003

Check that the inplenentation rejects a pragma Atomic when it cannot
support indivisible reads or updates of the object. Check that the

i npl enentation rejects a pragma Atom c_Conponents when it cannot
support indivisible reads or updates of the conponents of the array
obj ect.

BXC6A01

Check that if a volatile object is passed as a paraneter, then the type
of the formal parameter nmust not be a non-volatile by-reference type.

BXC6A02

Check that if a volatile object is used as an actual for a generic
formal object of nobde in out, the type of the generic formal object
must be volatile. Check that if the prefix of 'Access denotes a
vol atil e object (including a conponent), the designated type of the
resulting access type nmust be volatile.

BXC6A03

Check that if a volatile type is used as an actual for a generic formal
derived type, the ancestor of the formal type nust not be a
non-vol atil e by-reference type.

BXC6A04

Check that if a pragma Volatile, Volatile_Conponents, Atomc, or

At onmi c_Components applies to a stand-al one constant object, then a
pragma I nmport nust also apply to it. Check that if a stand-al one
constant object is atomc or volatile solely because of its type, a
pragma | nmport need not apply to it.

BXD1001

Check that a Priority pragma is allowed inmmediately within a
task_definition, a protected _definition, and the declarative_ part of a
subprogram body. Check that a Priority pragma is not allowed in other

pl aces. Check that an Interrupt_Priority pragma is allowed i nmedi ately
within a task_definition or a protected_definition. Check that an
Interrupt _Priority pragma is not allowed in the declarative part of a
subprogram body. Check that only one such pragma is allowed within a

gi ven construct.

BXD1002

Check that the pragma priority expression nmust be static when the
pragma is located within the declarative_part of a subprogram body.
Check that the expression in a Priority and Interrupt_Priority pragna
is required to be of type Integer. Check that the pragma priority
expression need not be static when the pragma is located within a

task_definition or protected_definition
BXE2007

Check that a declared Shared_Passive library unit may not contain:
objects that are not preel aborable, library |evel task object

decl arations, protected objects with entries, access types that
designate a class-w de type, access types that designate a task type,
or access types that designate a protected type wth entries. Check
that a declared Shared_Passive library unit may contain: objects that
are preel aborable, protected objects without entries, protected types
with entries, and task types.

BXE2008

Check that a declared Renote_Types library unit may not contain:
variabl e declarations; private types where the full view of the type
contains a non-renote access type and no READ and WRITE attributes are
supplied; visible access types where the type is neither an
access-to-subprogramtype nor a general access type that designates a
class-wide limted private type. Check that a declared Renote_Types
library unit may contain: private types where the full view of the type
contains a non-renote access type and READ and WRI TE attributes are
suppl i ed.

BXE2009

Check that a declared Renote_Call _Interface library unit may not
contain: variable declarations, task type declarations, protected type
decl arations, nested generic declarations, limted types, subprogram

declarations to which a pragma inline applies, non-preel aborable
constant decl arations, a subprogram declaration with a formal
paranmeter of an access type, or a subprogramdeclaration with a
formal parameter of a limted type without READ and WRI TE attri butes.

Check that a Renote_Call Interface library unit may not depend upon a
shared passive or normal package. Check that a decl ared
Renote_Call Interface library unit may contain: subprogram decl aration

with a formal paraneter of alimted type wth READ and WRI TE
attributes. Check that pragma Asynchronous can only be applied to RC
procedures containing only node in paraneters.

BXE2010

Check that a public child library unit of a renote call interface
l[ibrary unit nmust itself have a Renpote_Call _Interface pragma. Check
that a private child library unit of a renote call interface library
unit are not subjected to the restrictions of an RClI unit unless the
private child unit contains a Renote_Call _Interface pragna. Check the

paraneterized formof the pragma to see that a library unit name can
be specified and if it is specified, it nmust correspond to the library
unit in which it is contained. Check that a public child library unit
of a normal package cannot be a renote call interface unit. Check that
a public child Iibrary unit of a pure package can be a renote cal
interface unit.

BXE2011

Check that a value of a renpte access-to-subprogramtype can only be
converted to another conformant renote access-to-subprogramtype. Check
that the prefix of an access attribute_reference that yields a value
of a renote access-to-subprogramtype shall statically denote a
conformant renote subprogram Check that a value of a renote
access-to-class-wide type can only be converted to another renote
access-to-cl ass-wi de type. Check that the Storage_Pool and Storage Size
attributes are not defined for renote access-to-class-w de types.

BXE2012

Check that a renpte access-to-cl ass-w de type nust designate a limted
private type. Check that the primtive subprograns of the linmted
private type designated by a renote access-to-class-w de type can only
have access parameters for the controlling paranmeters. Check that
non-controlling paraneters of limted private types designated by a
renote access-to-class-wide type are required to have Read and Wite
attributes. Check that a value of a renpte access-to-class-w de type
can be inplicitly converted only as part of a dispatching call where
the value designates a controlling operand of the call.

BXE2A01

Check that a Declared Pure library unit can depend only on other
Decl ared Pure library units. Specifically, it can not depend on a
Shar ed Passive Unit.

BXE2A02

Check that a Declared Pure library unit can depend only on other
Decl ared Pure library units. Specifically it can not depend on a
Renote Types unit.

BXE2A03

Check that a Declared Pure library unit can depend only on other
Decl ared Pure library units. Specifically it cannot depend on an
Normal unrestricted unit.

BXE2A04

Check that a Shared Passive library unit can depend only on ot her
Shared Passive or Declared Pure library units. Specifically that it
can not depend on a Renote Types library unit.

BXE2A05

Check that a Shared Passive library unit can depend only on ot her
Shared Passive library units or Declared Pure library units.
Specifically that it can not depend on a Normal unrestricted unit.

BXE2A06

Check that a Renpte Types library unit can depend only on other Renote
Types library units, Declared Pure library units or Shared Passive
library units. Specifically that it cannot depend on a Nor mal
unrestricted unit

BXE4001

Check that pragma Asynchronous can only be applied to one of the
followi ng three categories of itens: Renote procedures where the formal
paraneters of the procedures are all of node in; The first subtype of a
renote access-to-procedure type where the fornmal paraneters of the
designated profile of the type are all of nbde in; Renote

access-to-cl ass-w de types.

BXF1001

Check that values of 2 and 10 are all owabl e val ues for Machi ne_Radi x of
a decimal first subtype. Check that values other than 2 and 10 are not
al l owed for Machi ne_Radi x of a decimal first subtype. Check that the
expression used to define Machi ne_Radi x nust be static. Check that the
package Ada.Decimal is available. Check that 10**(-Max_Scale) is

all owed as a decinmal type's delta. Check that 10**(-Mn_Scale) is

all owed as a decinmal type's delta. Check that Mn_Delta and Max_Delta
are allowed for delta in decinmal fixed point definitions. Check that
Max_Decimal _Digits is allowed for digits in a decimal fixed point
definition. Check that a value N larger than Max_Scale is not all owed
in the expression 10**(-N) as a decimal type's delta. Check that a
value N snmaller than Mn_Scale is not allowed in the expression
10**(-N) as a decimal type's delta. Check that neither a val ue
smaller than Mn_Delta nor a value larger than Max_Delta are all owed
for delta in decimal fixed point definitions. Check that

BXH4001

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restriction:
No_Protected_Types disallows protected types in the conpil ations.

BXH4002

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restriction:
No_Al l ocators disallows allocators in the conpilations.

BXH4003

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restriction:
No_Local _All ocators disallows allocators and generic package
instanti ations in subprograns, generic subprograns, tasks, and entry
bodi es. Check that allocators and generic instantiations are still
allowed at the library package |evel.

BXH4004

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restriction:
No_Unchecked Deal | ocation disallows the use of Unchecked Deal | ocati on;
Check that the application of the configuration pragma Restrictions
with the specific restriction: Inmredi ate_Recl amation i s accept ed.

BXH4005

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
No_Exceptions is accepted.

BXH4006

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
No_Fl oati ng Point is accepted.

BXH4007

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
No_Fi xed_Poi nt is accepted.

BXH4008

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
No_Unchecked_Conversi on does not allow the use of
Unchecked_Conver si on.

BXH4009

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
No_Access_Subprograns is accepted.

BXH4010

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
No_Unchecked_Access i s accepted.

BXH4011

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
No_Di spat ch disall ows occurrences of T C ass.

BXH4012

Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti
rejects any semantic dependence on Sequential IO Direct_1Q

Wde Text 10 or Streaml| O

BXH4013
Check pragma Restrictions. Check that the application of the
configuration pragma Restrictions with the specific restricti

No_Del ay is accepted.

C250001

on:

on:

on:

on:

on:

on:

on:

on: No IO
Text 1O

on:

Check that wide character literals are supported. Check that wi de
character string literals are supported.

C250002

Check that characters in Latin-1 above ASCI|.Del can be used in
identifiers, character literals and strings.

C330001

Check that a variable object of an indefinite type is properly
initialized/ constrained by an initial value assignment that is a) an
aggregate, b) a function, or c) an object. Check that objects of the
above types do not need explicit constraints if they have initial

val ues.

C330002

Check that if a subtype indication of a variable object defines an

i ndefinite subtype, then there is an initialization expression. Check
that the object remains so constrained throughout its lifetinme. Check
for cases of tagged record, arrays and generic formal type.

C332001

Check that the static expression given for a nunber declaration may be
of any nuneric type. Check that the type of a nanmed nunber is

uni versal _integer or universal _real regardless of the type of the
static expression that provides its val ue.

C340001

Check that user-defined equality operators are inherited by a derived
type except when the derived type is a nonlimted record extension. In
the latter case, ensure that the primtive equality operation of the
record extension conpares any extended conponents according to the
predefi ned equality operators of the conponent types. Al so check that
the parent portion of the extended type is conpared using the
user-defined equality operation of the parent type.

C340A01

Check that a tagged type declared in a package specification may be
passed as a generic formal (tagged) private type to a generic package
decl aration. Check that the formal type may be extended with a record
extension in the generic package. Check that, in the instance, the
record extension inherits the user-defined primtive subprograns of the
t agged act ual

C340A02

Check that a record extension (declared in a package specification) of
a tagged type (declared in a different package specification) may be
passed as a generic formal (tagged) private type to a generic package
declaration. Check that the formal type may be further extended with a
record extension in the generic package. Check that, in the instance,

the record extension inherits the user-defined primtive subprograns of
the tagged actual, including those inherited by the actual fromits
parent .

C341A01

Check that formal paraneters of a class-w de type can be passed val ues
of any specific type within the class.

C341A02

Check that class-w de objects can be reassigned with objects from the
same specific type used to initialize them

C341A03

Check that an object of one class-wide type can initialize a
cl ass-wi de object of a different type when the operation is enbedded in
a generic unit.

C341A04
Check that class-w de objects can be initialized using allocation
C352001

Check that the predefined Character type conprises 256 positions.

Check that the nanes of the non-graphic characters are usable with the
attributes (Wde_)lmge and (Wde_)Value, and that these attributes
produce the correct result.

C354002

Check that the attributes of nodul ar types yield correct
val ues/results. The attributes checked are: First, Last, Range, Base,
M n, Max, Succ, Pred, Image, Wdth, Value, Pos, and Val

C354003

Check that the Wde_String attributes of nodul ar types yield correct
val ues/results. The attributes checked are: Wde_|l nage W de_Val ue

C360002

Check that nodul ar types may be used as array indices. Check that if
al i ased appears in the conponent_definition of an array_type that each
conmponent of the array is aliased. Check that references to aliased
array objects produce correct results, and that out-of-bounds indexing
correctly produces Constraint_Error.

C371001

Check that if a discrimnant constraint depends on a discrimnmnant, the
eval uation of the expressions in the constraint is deferred wuntil an
object of the subtype is created. Check for cases of records with
private type conponent.

C371002

Check that if a discrimnant constraint depends on a discrimnmnant, the
eval uation of the expressions in the constraint is deferred until an
obj ect of the subtype is created. Check for cases of records.

C371003

Check that if a discrimnant constraint depends on a discrimnmnant, the
eval uation of the expressions in the constraint is deferred wuntil an
object of the subtype is created. Check for cases of records where

t he conponent containing the constraint is present in the subtype.

C3900010
See C3900011. AM
C3900011

Check that a record extension can be declared in the same package as
its parent, and that this parent may be a tagged record or a record
extension. Check that each derivative inherits all user- defined
primtive subprograns of its parent (including those that its parent
inherited), and that it may declare its own primtive subprograns.
Check that predefined equality operators are defined for the root
tagged type. Check that type conversion is defined froma type
extension to its parent, and that this parent itself may be a type
ext ensi on.

C390002

Check that a tagged base type may be decl ared, and derived fromin
sinmple, private and extended forns. (Overlaps with C390B04) Check that
t he package Ada. Tags is present and correctly inplenented. Check for
the correct operation of Expanded_Nane, External Tag and Internal _Tag
wi thin that package. Check that the exception Tag_Error is correctly
raised on calling Internal _Tag with bad input.

C390003

Check that for a subtype S of a tagged type T, S C ass denotes a

cl ass-wi de subtype. Check that T Tag denotes the tag of the type T,
and that, for a class-w de tagged type X, X Tag denotes the tag of X
Check that the tags of stand al one objects, record and array
conponents, aggregates, and formal parameters identify their type.
Check that the tag of a value of a formal paraneter is that of the
actual paranmeter, even if the actual is passed by a view conversion

C390004

Check that the tags of allocated objects correctly identify the type of
the allocated object. Check that the tag corresponds correctly to the
val ue resulting fromboth normal and vi ew conversion. Check that the
tags of accessed val ues designating aliased objects correctly identify
the type of the object. Check that the tag of a function result
correctly evaluates. Check this for class-wi de functions. The tag of
a class-wide function result should be the tag appropriate to the

actual value returned, not the tag of the ancestor type.
C3900050

See (C3900053. AM

C3900051

See C3900053. AM

C3900052

See (C3900053. AM

C3900053

Check that a private tagged type declared in a package specification
may be extended with a private extension in a different package
specification, and that this private extension may in turn be extended
by a private extension in a third package. Check that each derivative
i nherits the user-defined primtive subprogranms of its parent
(including those that its parent inherited), that it may override these
inherited primtive subprogranms, and that it may al so declare its own
primtive subprogranms. Check that type conversion is defined froma
type extension to its parent, and that this parent itself nay be a type
ext ensi on.

C3900060
See C3900063. AM
C3900061
See C3900063. AM
C3900062
See C3900063. AM
C3900063

Check that a private tagged type declared in a package specification
may be extended with a private extension in a different package
specification, and that this private extension may in turn be extended
by a record extension in a third package. Check that each derivative

i nherits the user-defined primtive subprogranms of its parent
(including those that its parent inherited), that it may override these
inherited primtive subprogranms, and that it may al so declare its own
primtive subprogranms. Check that type conversion is defined froma
type extension to its parent, and that this parent itself nay be a type
ext ensi on.

C390007

Check that the tag of an object of a tagged type is preserved by type
conversion and paraneter passing.

C390010

Check that if Sis a subtype of a tagged type T, and if Sis
constrained, then the allowable values of S Class are only those that,
when converted to T, belong to S.

C390011

Check that tagged types declared wi thin generic package decl arations
generate distinct tags for each instance of the generic.

C390A010
See C390A011. AM
C390A011

Check that a nonprivate tagged type declared in a package specification
may be extended with a record extension in a different package
specification, and that this record extension may in turn be extended
by a record extension. Check that each derivative inherits the
user-defined primtive subprograns of its parent (including those that
its parent inherited), that it may override these inherited primtive
subprograns, and that it may also declare its own prinmtive
subprogranms. Check that predefined equality operators are defined for
the tagged type and its derivatives. Check that type conversion is
defined froma type extension to its parent, and that this parent
itself may be a type extension

C390A020
See C390A022. AM
C390A021
See C390A022. AM
C390A022

Check that a nonprivate tagged type declared in a package specification
may be extended with a record extension in a different package
specification, and that this record extension may in turn be extended
by a private extension in a third package. Check that each derivative
i nherits the user-defined primtive subprograns of its parent
(including those that its parent inherited), that it may override these
inherited primtive subprogranms, and that it may al so declare its own
primtive subprograns. Check that predefined equality operators are
defined for the tagged type and its derivatives. Check that type
conversion is defined froma type extension to its parent, and that
this parent itself may be a type extension

C390A030
See C390A031. AM

C390A031

Check that a nonprivate tagged type declared in a package specification
may be extended with a private extension in a different package
specification, and that this private extension may in turn be extended
by a private extension. Check that each derivative inherits the
user-defined primtive subprograns of its parent (including those that
its parent inherited), that it may override these inherited primtive
subprograns, and that it may also declare its own prinmtive
subprogranms. Check that predefined equality operators are defined for
the tagged type and its derivatives. Check that type conversion is
defined froma type extension to its parent, and that this parent
itself may be a type extension

C391001

Check that structures nesting discrimnated records as components in
record extension are correctly supported. Check for this using limted
private structures. Check that record extensions inherit all the

vi si bl e conponents of their ancestor types. Check that discrimnants
are correctly inherited.

C391002

Check that structures nesting discrimnated records as components in
record extension are correctly supported. Check that record extensions
inherit all the visible conponents of their ancestor types. Check that
discrimnants are correctly inherited.

C392002

Check that the use of a class-wide fornmal paraneter allows for the
proper dispatching of objects to the appropriate inplenentation of a
primtive operation. Check this in the case where the root tagged type
is defined in a generic package, and the type derived fromit is
defined in that same generic package.

C392003

Check that the use of a class-wide fornmal paraneter allows for the
proper dispatching of objects to the appropriate inplenentation of a
primtive operation. Check this where the root tagged type is defined
in a package, and the extended type is defined in a nested package.

C392004

Check that subprograns inherited fromtagged derivations, which are
subsequently redefined for the derived type, are available to the
package defining the new class via view conversion. Check that
operations perforned on objects using view conversion do not affect
the extended fields. Check that visible operations not nasked by the
deriving package remain available to the client, and do not affect the
extended fi el ds.

C392005
Check that, for an inplicitly declared di spatching operation that is

overridden, the body executed is the body for the overriding
subprogram even if the overriding occurs in a private part. Check for

the case where the overriding operations are declared in a public child
unit of the package declaring the parent type, and the descendant type
is a private extension. Check for both dispatching and nondi spat chi ng
cal I s.

C392008

Check that the use of a class-wide formal paraneter allows for the
proper dispatching of objects to the appropriate inplenentation of a
primtive operation. Check this for the case where the root tagged
type is defined in a package and the extended type is defined in a
dependent package.

C392010

Check that a subprogram di spatches correctly with a controlling access
paranmeter. Check that a subprogram di spatches correctly when it has
access paraneters that are not controlling. Check with and wi t hout
defaul t expressions.

C392011

Check that if a function call with a controlling result is itself a
control ling operand of an enclosing call on a dispatching operation
then its controlling tag value is determned by the controlling tag
val ue of the enclosing call.

C392012 (This test has been renoved.)

Check that if all of the controlling operands of a call on a

di spatching operation are tag indetermnate, then if the call has a
controlling result and is a controlling operand of an enclosing call,
then its controlling tag value is determned by the controlling tag
val ue of the enclosing call.

C392A01

Check that the use of a class-wide fornmal paraneter allows for the
proper dispatching of objects to the appropriate inplenentation of a
primtive operation. Check this for the root tagged type defined in a
package, and the extended type is defined in that sane package.

C3920C05

Check that for a call to a dispatching subprogramthe subprogram body
which is executed is determ ned by the controlling tag for the case
where the call has statically tagged controlling operands of the type
T. Check this for various operands of tagged types: objects (declared
or allocated), formal paraneters, view conversions, function calls
(both primtive and non-primtive).

C392007

Check that for a call to a dispatching subprogramthe subprogram body
which is executed is determ ned by the controlling tag for the case
where the call has dynam c tagged controlling operands of the type T.
Check for calls to these sane subprograns where the operands are of

specific statically tagged types: objects (declared or allocated),
formal paraneters, view conversions, and function calls (both primtive
and non-primtive).

C392D01

Check that, for an inplicitly declared di spatching operation that is
overridden, the body executed is the body for the overriding
subprogram even if the overriding occurs in a private part. Check
that, for an inplicitly declared di spatching operation that is NOT
overridden, the body executed is the body of the corresponding
subprogram of the parent type. Check for the case where the overriding
(and non-overriding) operations are declared for a private extension
(and its full type) in a public child unit of the package declaring the
ancestor type, and the ancestor type is a tagged private type whose
full viewis itself a derived type

C392D02

Check that a primtive procedure declared in a private part is not
overridden by a procedure explicitly declared at a place where the
primtive procedure in question is not visible. Check for the case
where the non-overriding operation is declared in a separate
(non-chil d) package fromthat declaring the parent type, and the
descendant type is a record extension

C392D03

Check that, for an inherited dispatching operation that is overridden

t he body executed is the body of the overriding subprogram even if the
overriding occurs in a private part. Check for the case where the
overriding operation is declared in a separate (non-child) package from
that declaring the parent type, and the descendant type is a record
extension. Check for both dispatching and nondi spatching calls.

C393001

Check that an abstract type can be declared, and in turn concrete types
can be derived fromit. Check that the definition of actua
subprograns associated with the derived types dispatch correctly.
C393007

Check that an extended type can be derived froman abstract type, where
the abstract type is defined in a package, and the type derived fromit
is defined in a distinct |ibrary package.

C393008

Check that an extended type can be derived froman abstract type.
C393009

Check that an extended type can be derived froman abstract type.

C393010

Check that an extended type can be derived froman abstract type and
that a call on an abstract operation is a dispatching operation. Check
that such a call can dispatch to an overriding operation declared in
the private part of a package.

C393011

Check that an abstract extended type can be derived froman abstract
type, and that a a non-abstract type may then be derived fromthe
second abstract type.

C393012

Check that a non-abstract subprogram of an abstract type can be called
with a controlling operand that is a type conversion to the abstract
type. Check that converting to the class-wi de type of an abstract type
i nside an operation of that type causes a "redi spatch” of the called
operation.

C393A02

Check that a dispatching call to an abstract subprograminvokes the
correct subprogram body of a descendant type according to the
controlling tag. Check that a subprogram can be declared with formal
paranmeters and result that are of an abstract type's associ ated

cl ass-wi de type and that such subprograns can be called. 3.4.1(4)

C393A03

Check that a non-abstract primtive subprogram of an abstract type can
be called as a dispatching operation and that the body of this
subprogram can make a di spatching call to an abstract operation of the
correspondi ng abstract type.

C393A05

Check that for a nonabstract private extension, any inherited abstract
subprograns can be overridden in the private part of the i mmediately
encl osi ng package and that calls can be nmade to private di spatching
operations.

C393A06

Check that a type that inherits abstract operations but overrides each

of these operations is not required to be abstract, and that objects of
the type and its class-wi de type may be declared and passed in calls to
t he overridi ng subprograns.

C393B12

Check that an extended type can be derived in the specification of a
generi c package when the parent is an abstract type in a library
package.

C393B13

Check that an extended type can be derived froman abstract type when

that derivation is declared in a child package.
C393B14

Check that an extended type can be derived in a private child package
froman abstract type defined in a library package.

C3A0001

Check that access to subprogramtype can be used to select and invoke
functions with appropriate argunments dynam cally.

C3A0002

Check that access to subprogramtype can be used to select and invoke
procedures with appropriate arguments dynamnically.

C3A0003

Check that a function in a generic instance can be called using an
access-t o- subprogram val ue.

C3A0004

Check that access to subprogram may be stored within array objects,
and that the access to subprogram can subsequently be called.

C3A0005

Check that access to subprogram may be stored within record objects,
and that the access to subprogram can subsequently be called.

C3A0006

Check that access to subprogram may be stored within data structures,
and that the access to subprogram can subsequently be called.

C3A0007

Check that a call to a subprogramvia an access-to-subprogram val ue
stored in a data structure will correctly dispatch according to the tag
of the class-w de paraneter passed via that call

C3A0008

Check that subprogramreferences nmay be passed as paraneters using
access-to-subprogram types. Check that the passed subprograns may be
i nvoked fromw thin the called subprogram

C3A0009

Check that subprogramreferences nay be passed as paraneters using
access-to-subprogram types. Check that the passed subprograns may be
i nvoked fromw thin the called subprogram

C3A0010

Check that an access-to-subprogramtype in a generic instance may be
used to decl are access-to-subprogram objects which i nvoke subprograns
in the instance.

C3A0011

Check that an access-to-subprogram object whose type is declared in a
parent package, may be used to invoke subprograns in a child package.
Check that such access objects may be stored in a data structure and

t hat subprograns may be called by wal king the data structure.

C3A00120
See file C3A00122. AM
C3A00121
See file C3A00122. AM
C3A00122

Check that an access-to-subprogram object can be used to invoke a
subpr ogram when t he subprogram body had been decl ared and i npl enent ed
as a subunit.

C3A0013

Check that a general access type object may reference all ocated poo
objects as well as aliased objects. (3,4) Check that formal paraneters
of tagged types are inplicitly defined as aliased; check that the

" Access of these formal paraneters designates the correct object with
the correct tag. (5) Check that the current instance of a limted type
is defined as aliased. (5)

C3A0014

Check that if the view defined by an object declaration is aliased, and
the type of the object has discrimnants, then the object is
constrained by its initial value even if its nom nal subtype is
unconstrai ned. Check that the attribute A Constrained returns True if
Ais a formal out or in out parameter, or dereference thereof, and A
denotes an aliased view of an object.

C3A1001

Check that the full type conpleting a type with no discrimnant part or
an unknown discrimnant part may have explicitly declared or inherited
di scrimnants. Check for cases where the types are records and
protected types.

C3A1002

Check that the full type conpleting a type with no discrimnant part or
an unknown discrimnant part may have explicitly declared or inherited
di scrimnants. Check for cases where the types are tagged records and
task types.

C3A2001

Check that an access type may be defined to designate the cl ass-w de
type of an abstract type. Check that the access type may then be used
subsequently with types derived fromthe abstract type. Check that

di spat chi ng operations dispatch correctly, when called using val ues
designated by objects of the access type.

C3A2002

Check that, for X Access of a general access type A, ProgramError is
raised if the accessibility level of X is deeper than that of A Check
for the case where X denotes a view that is a dereference of an access
paranmeter, or a renane thereof. Check for cases where the actua
corresponding to X is: (a) An allocator. (b) An expression of a naned
access type. (c) Obj' Access.

C3A2003

Check that, for X Access of a general access type A, ProgramError is
raised if the accessibility level of X is deeper than that of A Check
for the case where X denotes a view that is a dereference of an access
paranmeter, or a renane thereof. Check for the case where X is an access
paranmeter and the correspondi ng actual is another access paraneter.

C3A2A01

Check that, for X Access of a general access type A, ProgramError is
raised if the accessibility level of X is deeper than that of A Check
for cases where X Access occurs in an instance body, and A is passed as
an actual during instantiation.

C3A2A02

Check that, for X Access of a general access type A, ProgramError is
raised if the accessibility level of X is deeper than that of A Check
for cases where X Access occurs in an instance body, and Ais a type
ei ther declared inside the instance, or declared outside the instance
but not passed as an actual during instantiation.

C410001

Check that evaluating an access to subprogram vari abl e containing the
val ue null causes the exception Constraint_Error. Check that the
default value for objects of access to subprogramtypes is null.

431001

Check that a record aggregate can be given for a nonprivate, nonlimted
record extension and that the tag of the aggregate values are
initialized to the tag of the record extension

C432001
Check that extension aggregates may be used to specify val ues for

types that are record extensions. Check that the type of the ancestor
expression may be any nonlimted type that is a record extension

i ncluding private types and private extensions. Check that the type
for the aggregate is derived fromthe type of the ancestor
expr essi on.

432002

Check that if an extension aggregate specifies a value for a record
extensi on and the ancestor expression has discrimnants that are

i nherited by the record extension, then a check is made that each

di scriminant has the value specified. Check that if an extension
aggregate specifies a value for a record extension and the ancestor
expression has discrimnants that are not inherited by the record
extension, then a check is made that each such discrimnant has the
val ue specified for the corresponding discrimnant. Check that the
correspondi ng discrimnant value may be specified in the record
conponent association list or in the derived type definition for an
ancestor. Check the case of ancestors that are several generations
renoved. Check the case where the value of the discrimnant(s) in
guestion is supplied several generations renoved. Check the case of
multiple discrimnants. Check that Constraint_Error is raised if the
check fails.

C432003

Check that if the type of the ancestor part of an extension aggregate
has discrimnants that are not inherited by the type of the aggregate,
and the ancestor part is a subtype mark that denotes a constrained
subtype, Constraint_FError is raised if: 1) any discrimnant of the
ancestor has a different value than that specified for a corresponding
discrimnant in the derived type definition for some ancestor of the
type of the aggregate, or 2) the value for the discrimnant in the
record association list is not the value of the correspondi ng

di scrimnant. Check that the conponents of the value of the aggregate
not given by the record conponent association list are initialized by
default as for an object of the ancestor type.

C432004

Check that the type of an extension aggregate may be derived fromthe
type of the ancestor part through multiple record extensions. Check for
ancestor parts that are subtype marks. Check that the type of the
ancestor part may be abstract.

C450001

Check that operations on nodul ar types performcorrectly. Check that
| oops over the range of a nodul ar type do not over or under run the
| oop.

452001

For a type extension, check that predefined equality is defined in
terns of the primtive equals operator of the parent type and any
t agged conponents of the extension part. For other conposite types,
check that the primtive equality operator of any matching tagged
conponents is used to determ ne equality of the enclosing type. For
private types, check that predefined equality is defined in ternms of

the user-defined (primtive) operator of the full type if the full type
is tagged. The partial view of the type may be tagged or untagged.
Check that predefined equality for a private type whose full viewis
untagged is defined in terns of the predefined equality operator of its
full type.

C460001

Check that if the target type of a type conversion is a general access
type, ProgramError is raised if the accessibility | evel of the operand
type is deeper than that of the target type. Check for the case where
the operand is an access paraneter. Check for cases where the actua
corresponding to the access paraneter is: (a) An allocator. (b) An
expression of a named access type. (c) nbj' Access.

C460002

Check that if the target type of a type conversion is a general access
type, ProgramError is raised if the accessibility | evel of the operand
type is deeper than that of the target type. Check for the case where
the operand is an access paraneter, and the actual corresponding to the
access paraneter is another access paraneter.

C460004

Check that if the operand type of a type conversion is class-wi de,
Constraint_Error is raised if the tag of the operand does not identify
a specific type that is covered by or descended fromthe target type.

C460005

Check that, for a view conversion of a tagged type that is the |eft
side of an assignnent statenent, the assignnent assigns to the
correspondi ng part of the object denoted by the operand.

C460006

Check that a view conversion to a tagged type is permtted in the
prefix of a selected conponent, an object renam ng decl aration, and
(if the operand is a variable) on the left side of an assignnment
statenment. Check that such a renam ng or assignment does not change
the tag of the operand. Check that, for a view conversion of a tagged
type, each nondi scri m nant conponent of the new view denotes the

mat chi ng conmponent of the operand object. Check that reading the val ue
of the viewyields the result of converting the value of the operand
object to the target subtype.

C460007

Check that, in a nunmeric type conversion, if the target type is an

i nteger type and the operand type is real, the result is rounded to the
nearest integer, and away fromzero if the result is exactly hal fway
between two integers. Check for static and non-static type

conver si ons.

C460008

Check that conversion to a nodul ar type raises Constraint_Error when
the operand value is outside the base range of the nodul ar type.

C460009

Check that Constraint_Error is raised in cases of null arrays when: 1
an assignnent is nade to a null array if the length of each di mension
of the operand does not match the length of the corresponding

di mensi on of the target subtype. 2. an array actual paraneter does not
match the | ength of correspondi ng di nensions of the formal in out

par amet er where the actual paraneter has the formof a type

conver si on. 3. an array actual paraneter does not match the

| ength of correspondi ng di nensions of the formal out paraneter where
the actual parameter has the formof a type conversion

C460010

Check that, for an array aggregate w thout an others choice assigned to
an object of a constrained array subtype, Constraint_Error is not
raised if the length of each dinension of the aggregate equals the

| ength of the correspondi ng di mension of the target object, even if the
bounds of the correspondi ng i ndex ranges do not match

C460A01

Check that if the target type of a type conversion is a general access
type, ProgramError is raised if the accessibility | evel of the operand
type is deeper than that of the target type. Check for cases where the
type conversion occurs in an instance body, and the operand type is
passed as an actual during instantiation.

C460A02

Check that if the target type of a type conversion is a general access
type, ProgramError is raised if the accessibility | evel of the operand
type is deeper than that of the target type. Check for cases where the
type conversion occurs in an instance body, and the operand type is
declared inside the instance or is the anonynous access type of an
access paraneter or access discrim nant.

C490001

Check that, for a real static expression that is not part of a |arger
static expression, and whose expected type T is a floating point type
that is not a descendant of a formal scalar type, the value is rounded
to the nearest machine nunber of T if T Machine Rounds is true, and is
truncated otherw se. Check that if rounding is perforned, and the val ue
is exactly hal fway between two machi ne nunbers, the rounding is
performed away from zero.

490002

Check that, for a real static expression that is not part of a |arger
static expression, and whose expected type T is an ordinary fixed point
type that is not a descendant of a formal scalar type, the value is
rounded to the nearest integral multiple of the small of T if

T Machi ne_Rounds is true, and is truncated otherw se. Check that if

rounding is perforned, and the value is exactly hal fway between two
multiples of the small, the rounding is performed away from zero.

C490003

Check that a static expression is legal if its evaluation fails no

| anguage- defi ned check other than Overfl ow Check. Check that such a
static expression is legal if it is part of a larger static expression
even if its value is outside the base range of the expected type.
Check that if a static expression is part of the right operand of a
short circuit control formwhose value is determined by its |eft
operand, it is not evaluated. Check that a static expression in a
non-static context is evaluated exactly.

C540001

Check that an expression in a case statenment may be of a generic formal
type. Check that a function call may be used as a case statenent
expression. Check that a call to a generic formal function may be

used as a case statenent expression. Check that a call to an inherited
function may be used as a case statenment expression even if its result
type does not correspond to any naneabl e subtype.

C631001

Check that if different forns of a nanme are used in the default
expression of a discrimnant part, the selector may be an operator
synbol or a character literal

C640001

Check that the prefix of a subprogramcall with an actual paraneter
part may be an inplicit dereference of an access-to-subprogram val ue.
Check that, for an access-to-subprogramtype whose designated profile
contai ns paranmeters of a tagged generic formal type, an access-to-
subpr ogram val ue may desi gnate di spatchi ng and non-di spat chi ng
operations, and that dereferences of such a value call the appropriate
subpr ogram

C641001

Check that actual paraneters passed by reference are view converted to
t he nom nal subtype of the formal paraneter.

C650001

Check that, for a function result type that is a return-by-reference
type, ProgramError is raised if the return expression is a nane that
denotes an object view whose accessibility level is deeper than that of
the master that el aborated the function body. Check for cases where
the result type is: (a) Atagged limted type. (b) Atask type. (c) A
protected type. (d) A conposite type with a subconponent of a
return-by-reference type (task type).

C730001

Check that the full view of a private extension may be derived

indirectly fromthe ancestor type (i.e., the parent type of the ful
type may be any descendant of the ancestor type). Check that, for a
primtive subprogramof the private extension that is inherited from

t he ancestor type and not overridden, the formal paraneter nanes and
default expressions cone fromthe corresponding primtive subprogram of
t he ancestor type, while the body cones fromthat of the parent type.
Check both dispatchi ng and non-di spat chi ng cases.

C730002

Check that the full view of a private extension may be derived
indirectly fromthe ancestor type (i.e., the parent type of the ful
type may be any descendant of the ancestor type). Check that, for a
primtive subprogramof the private extension that is inherited from

t he ancestor type and not overridden, the formal paraneter nanes and
default expressions cone fromthe corresponding primtive subprogram of
t he ancestor type, while the body conmes fromthat of the parent type.
Check for a case where the parent type is derived fromthe ancestor
type through a series of types produced by generic instantiations.

Exam ne both the static and dynam c bi ndi ng cases.

C730004

Check that for a type declared in a package, descendants of the package
use the full view of type. Specifically check that full view of the
limted type is visible only in private descendants (children) and in
the private parts and bodi es of public descendants (children). Check
that a linmted type may be used as an out paraneter outside the package
that defines the type

C730A01

Check that a tagged type declared in a package specification may be
passed as a generic formal (tagged) private type to a generic package
declaration. Check that the formal type may be extended with a private
extension in the generic package. Check that, in the instance, the
private extension inherits the user-defined primtive subprograns of

t he tagged act ual

C730A02

Check that a private extension (declared in a package specification) of
a tagged type (declared in a different package specification) may be
passed as a generic formal (tagged) private type to a generic package
declaration. Check that the formal type may be further extended with a
private extension in the generic package. Check that the (visible)
conponents inherited by the "generic" extension are visible outside the
generi c package. Check that, in the instance, the private extension

i nherits the user-defined primtive subprograns of the tagged act ual

i ncluding those inherited by the actual fromits parent.

C760001

Check that Initialize is called for objects and conponents of a
control l ed type when the objects and conmponents are not assigned
explicit initial values. Check this for "sinple"” controlled objects,
controll ed record conponents and arrays with controll ed conponents.

Check that if an explicit initial value is assigned to an object or
conponent of a controlled type then Initialize is not call ed.

C760002

Check that assignnent to an object of a (non-limted) controlled type
causes the Adjust operation of the type to be called. Check that Adjust
is called after copying the value of the source expression to the
target object. Check that Adjust is called for all controlled
conponents when the containing object is assigned. (Test this for the
cases where the type of the containing object is controlled and
noncontrol l ed; test this for initialization as well as assignnment
statenments.) Check that for an object of a controlled type with
control |l ed components, Adjust for each of the conponents is called
before the containing object is adjusted. Check that an Adjust
procedure for a Limted_Controlled type is not called by the

i mpl enent ati on.

C760007

Check that Adjust is called for the execution of a return statenent for
a function returning a result of a (non-limted) controlled type.

Check that Adjust is called when eval uating an aggregate conponent
association for a controlled component. Check that Adjust is called
for the assignnent of the ancestor expression of an extension aggregate
when the type of the aggregate is controlled.

C760009

Check that for an extension_aggregate whose ancestor_part is a
subtype_mark (i.e. Typemark' (Subtype with Field => x, etc.))
Initialize is called on all controlled subconponents of the ancestor
part; if the type of the ancestor part is itself controlled, the
Initialize procedure of the ancestor type is called, unless that
Initialize procedure is abstract. Check that the utilization of a
controlled type for a generic actual paraneter supports the correct
behavior in the instantiated package.

C760010

Check that explicit calls to Initialize, Adjust and Finalize procedures
that rai se exceptions propagate the exception raised, not

Program Error. Check this for both a user defined exception and a

| anguage defined exception. Check that inplicit calls to initialize
procedures that raise an exception propagate the exception raised, not
Program Error; Check that the utilization of a controlled type as the
actual for a generic formal tagged private paranmeter supports the
correct behavior in the instantiated software.

C760011

Check that the anonynous objects of a controlled type associated with
function results and aggregates are finalized no later than the end of
t he i nnernost enclosing declarative_itemor statement. Also check this
for function calls and aggregates of a noncontrolled type with
control | ed conmponents.

C760012

Check that record conponents that have per-object access discrim nant
constraints are initialized in the order of their conmponent

decl arations, and after any conponents that are not so constrai ned.
Check that record conponents that have per-object access discrim nant
constraints are finalized in the reverse order of their conponent
decl arations, and before any components that are not so constrai ned.

C761001

Check that controlled objects declared imediately within a library
package are finalized follow ng the conpletion of the environnment task
(and prior to termnation of the progran).

C761002

Check that objects of a controlled type that are created by an
allocator are finalized at the appropriate time. |In particular, check
that such objects are not finalized due to conpletion of the master in
which they were allocated if the corresponding access type is decl ared
outside of that master. Check that Unchecked Deal |l ocation of a
controll ed object causes finalization of that object.

C761003

Check that an object of a controlled type is finalized when the

encl osing master is conplete. Check this for controlled types where the
derived type has a discrimnant. Check this for subprograns of abstract
types derived fromthe types in Ada.Finalization. Check that
finalization of controlled objects is performed in the correct order

In particular, check that if nultiple objects of controlled types are
declared imedi ately within the same declarative part then type are
finalized in the reverse order of their creation

C761004

Check that an object of a controlled type is finalized with the

encl osing master is conplete. Check that finalization occurs in the
case where the master is left by a transfer of control. Specifically
check for types where the derived types do not have discrimnants.
Check that finalization of controlled objects is perforned in the
correct order. |In particular, check that if nultiple objects of
controlled types are declared imediately w thin the sane decl arative
part then they are finalized in the reverse order of their creation

C761005

Check that deriving abstract types fromthe types in Ada.Finalization
does not negatively inpact the inplicit operations. Check that an
object of a controlled type is finalized when the enclosing master is
conpl ete. Check that finalization occurs in the case where the master
is left by a transfer of control. Check this for controlled types where
the derived type has a discrimnant. Check this for cases where the
type is defined as private, and the full type is derived fromthe
types in Ada.Finalization. Check that finalization of controlled
objects is performed in the correct order. |In particular, check that

if multiple objects of controlled types are declared i nmedi ately
within the sane declarative part then type are finalized in the
reverse order of their creation

C761006

Check that Program Error is raised when: * an exception is raised if
Finalize invoked as part of an assignment operation; or * an exception
is raised if Adjust invoked as part of an assignment operation, after
any other adjustnment due to be performed are perforned; or * an
exception is raised if Finalize invoked as part of a call on
Unchecked_Deal | ocation, after any other finalizations to be perfornmed
are performed.

C761007

Check that if a finalize procedure invoked by a transfer of control due
to selection of a termnate alternative attenpts to propagate an
exception, the exception is ignored, but any other finalizations due to
be performed are perforned.

C761008 (This test has been renoved)

Check that when an exception occurs in a Finalize operation i nvoked by
a "normal" transfer of control (exit, return, goto), ProgramError is
raised no earlier than after the finalization of the master being
finalized when the exception occurred, and no | ater than the point
wher e normal execution woul d have continued. Check that other
finalizations due to be perfornmed are performed prior to raising
Program Error. Check that for Finalize invoked by a transfer of
control due to an exception, any other finalizations due to be
performed for the sane naster are performed, then ProgramError is

rai sed i medi ately after |leaving the master. Check that other
finalizations are perforned first. Check that no other processing may
occur after |eaving the master

C761009 (This test has been renoved)

Check that when an exception occurs in a Finalize operation invoked by
the transfer of control of a requeue statenent, ProgramError is raised
no earlier than after the finalization of the master being finalized
when the exception occurred, and no later than the point where normal
execution would have continued. Check that other finalizations due to
be performed are perforned prior to raising Program Error

C840001

Check that, for the type determ ned by the subtype mark of a use type
cl ause, the declaration of each primtive operator is use-visible
within the scope of the clause, even if explicit operators with the
same names as the type's operators are declared for the subtype. Check
that a call to such an operator executes the body of the type's
operation.

C854001

Check that a subprogram decl aration can be conpleted by a subprogram

renam ng declaration. In particular, check that such a renam ng-as-body
can be given in a package body to conplete a subprogram declared in the
package specification. Check that calls to the subprograminvoke the
body of the renamed subprogram Check that a renam ng allows a copy of
an inherited or predefined subprogram before overriding it later

Check that renam ng a dispatching operation calls the correct body in
case of overriding.

C910001

Check that tasks may have discrimnants. Specifically, check where the
subtype of the discrimnant is a discrete subtype and where it is an
access subtype. Check the case where the default values of the

di scrimnants are used.

910002

Check that the contents of a task object include the values of its
di scrimnants. Check that sel ected_conponent notation can be used to
denote a discrimnant of a task.

C930001

Check when a dependent task and its master both term nate as a result
of atermnate alternative that finalization is perfornmed and that the
finalization is perfornmed in the proper order

C940001

Check that a protected object provides coordi nated access to shared
data. Check that it can be used to sequence a nunmber of tasks. Use the
protected object to control a single token for which three tasks
conpete. Check that only one task is running at a tine and that al
tasks get a chance to run sonetine.

940002

Check that a protected object provides coordi nated access to shared
data. Check that it can inplenent a semaphore-like construct using a
par anet erl ess procedure which allows a specific maxi rum nunber of tasks
to run and excludes all others

C940004

Check that a protected record can be used to control access to
resources (data internal to the protected record).

C940005

Check that the body of a protected function can have internal calls to
ot her protected functions and that the body of a protected procedure
can have internal calls to protected procedures and to protected
functions.

C940006

Check that the body of a protected function can have external calls to

ot her protected functions and that the body of a protected procedure
can have external calls to protected procedures and to protected
functions.

940007

Check that the body of a protected function declared as an object of a
gi ven type can have internal calls to other protected functions and
that a protected procedure in such an object can have internal calls to
protected procedures and to protected functions.

C940010

Check that if an exception is raised during the execution of an entry
body it is propagated back to the caller

940011

Check that, in the body of a protected object created by the execution
of an allocator, external calls to other protected objects via the
access type are correctly perforned

C940012
Check that a protected object can have discrimnants
C940013

Check that itens queued on a protected entry are handl ed FI FO and t hat
the 'count attribute of that entry reflects the length of the queue.

940014

Check that as part of the finalization of a protected object each cal
remai ning on an entry queue of the objet is renoved fromits queue and
Program Error is raised at the place of the correspondi ng

entry_call _statenent.

C940015

Check that the conponent_declarations of a protected_operation are
el aborated in the proper order. Check that per-object constraints are
el aborated for each object.

940016

Check that an Unchecked_Deal | ocation of a protected object perforns the
required finalization on the protected object.

C940A03

Check that a protected object provides coordi nated access to shared
data. Check that it can inplenent a semaphore-like construct
controlling access to shared data through procedure paraneters to all ow
a specific maxi mum nunber of tasks to run and exclude all others.

C951001

Check that two procedures in a protected object will not be executed
concurrently.

C951002

Check that an entry and a procedure within the sanme protected object
wi Il not be executed simultaneously.

C953001

Check that if the evaluation of an entry_barrier condition propagates
an exception, the exception ProgramError is propagated to all current
callers of all entries of the protected object.

C953002

Check that the servicing of entry queues of a protected object
continues until there are no open entries with queued calls and that
this takes place as part of a single protected operation

C953003

Check that the servicing of entry queues of a protected object
continues until there are no open entries with queued (or requeued)
calls and that internal requeues are handled as part of a single
prot ected operation.

954001

Check that a requeue statement within an entry_body wth paraneters may
requeue the entry call to a protected entry with a subtype- conformant
paranmeter profile. Check that, if the call is queued on the new entry's
queue, the original caller remains blocked after the requeue, but the
entry_body containing the requeue is conpl eted.

C954010

Check that a requeue within an accept statenent does not block. This
test uses: Requeue to an entry in a different task Paraneterless cal
Requeue with abort

954011

Check that a requeue is placed on the correct entry; that the origina
caller waits for the conpletion of the requeued rendezvous; that the
original caller continues after the rendezvous. Specifically, this test
checks requeue to an entry in a different task, requeue where the entry
has paranmeters, and requeue with abort.

954012

Check a requeue within an accept body to another entry in the sane task
Specifically, check a call with parameters and a requeue wth abort.

C954013

Check that a requeue is cancelled and that the requeuing task is
unaffected when the calling task is aborted. Specifically, check
requeue to an entry in a different task, requeue where the entry has
paraneters, and requeue wth abort.

C954014

Check that a requeue is not canceled and that the requeueing task is
unaffected when a calling task is aborted. Check that the abort is
deferred until the entry call is conplete. Specifically, check requeue
to an entry in a different task, requeue where the entry call has
paraneters, and requeue w thout the abort option

C954015

Check that requeued calls to task entries may, in turn, be requeued.
Check that the internedi ate requeues are not blocked and that the
original caller remains blocked until the last requeue is conplete.
This test uses: Call with paraneters Requeue wth abort

C954016

Check that when a task that is called by a requeue is aborted, the
original caller receives Tasking_Error and the requeuing task is
unaf f ect ed.

C954017

Check that when an exception is raised in the rendezvous of a task
that was called by a requeue the exception is propagated to the
original caller and that the requeuing task is unaffected.

954018

Check that if a task is aborted while a requeued call is queued on one
of its entries the original caller receives Tasking_Error and the
requeui ng task is unaffected. This test uses: Requeue to an entry in a
different task Paraneterless call Requeue with abort

C954019

Check that when a requeue is to the sane entry the itens go to the
ri ght queue and that they are placed back on the end of the queue.

C954020

Check that a call to a protected entry can be requeued to a task entry.
Check that the requeue is placed on the correct entry; that the
original caller waits for the conpletion of the requeue and conti nues
after the requeued rendezvous. Check that the requeue does not bl ock
Specifically, check a requeue with abort froma protected entry to an
entry in a task.

954021

Check that a requeue within a protected entry to an entry in a
different protected object is queued correctly.

954022

In an entry body requeue the call to the same entry. Check that the
items go to the right queue and that they are placed back on the end
of the queue

C954023

Check that a requeue within a protected entry to a famly of entries
in adifferent protected object is queued correctly Call wth
par amet ers Requeue w th abort

C954024

Check that a call to a protected entry can be requeued to a task entry.
Check that the requeue is placed on the correct entry; that the
original caller waits for the conpletion of the requeue and conti nues
after the requeued rendezvous. Check that the requeue does not bl ock
Specifically, check a requeue wi thout abort froma protected entry to
an entry in a task.

C954025

Check that if the original entry call was a conditional entry call, the
call is cancelled if a requeue-wth-abort of the call is not selected

i medi ately. Check that if the original entry call was a tined entry
call, the expiration time for a requeue-w th-abort is the origina
expiration tine.

C954026

Check that if the original protected entry call was a conditional entry
call, the call is cancelled if a requeue-wi th-abort of the call is not
sel ected i mediately. Check that if the original protected entry cal
was a tined entry call, the expiration tinme for a requeue-wth-abort
is the original expiration tine.

C954A01

Check that if a task requeued wi thout abort on a protected entry queue
is aborted, the abort is deferred until the entry call conpletes, after
whi ch the task becones conpl et ed

C954A02

Check that if a task requeued with abort on a protected entry queue is
aborted, the protected entry call is canceled and the aborted task
beconmes conpl et ed

C954A03

Check that a requeue statement in an accept_statenent with paraneters
may requeue the entry call to a protected entry with no paraneters.
Check that, if the call is queued on the new entry's queue, the
original caller remains blocked after the requeue, but the

accept _statenent containing the requeue is conpleted. Note that this

test uses a requeue "with abort," although it does not check that such
a requeued caller can be aborted; that feature is tested el sewhere.

C960001

Confirmthat a sinple Delay Until statement is performed. Check that
t he del ay does not conplete before the requested tine and that it does
conpl ete thereafter

C960002

Check that the sinple "delay until" when the request tinme is "now' and
al so sone tine already in the past is obeyed and returns i medi ately

C960004

Wth the triggering statenment being a delay and with the Asynchronous
Sel ect statenent being in a tasking situation conplete the abortable
part before the delay expires. Check that the delay is cancelled and
that the optional statenments in the triggering part are not executed.

C974001

Check that the abortable part of an asynchronous sel ect statenent is
aborted if it does not conplete before the triggering statenent

conpl etes, where the triggering statenent is a delay_relative statenent
and check that the sequence of statenments of the triggering
alternative is executed after the abortable part is left.

C974002

Check that the sequence of statements of the triggering alternative of
an asynchronous sel ect statenment is executed if the triggering
statenment is a delay_until statenent, and the specified tine has

al ready passed. Check that the abortable part is not executed after the
sequence of statenments of the triggering alternative is left. Check
that the sequence of statenments of the triggering alternative of an
asynchronous select statenent is not executed if the abortable part
conpl etes before the triggering statenent, and the triggering statenent
is a delay_until statenent.

C974003

Check that the abortable part of an asynchronous sel ect statenent is
aborted if it does not conplete before the triggering statenent

conpl etes, where the triggering statement is a task entry call, and the
entry call is queued. Check that the sequence of statements of the
triggering alternative is executed after the abortable part is left.

C974004

Check that the abortable part of an asynchronous sel ect statenent is
aborted if it does not conplete before the triggering statenent

conpl etes, where the triggering statenent is a task entry call, the
entry call is queued, and the entry call conpletes by propagating an
exception and that the sequence of statenents of the triggering
alternative is not executed after the abortable part is left and that

t he exception propagated by the entry call is re-raised i mediately
foll owi ng the asynchronous sel ect.

C974005

Check that Tasking Error is raised at the point of an entry call which
is the triggering statenent of an asynchronous select, if the entry
call is queued, but the task containing the entry conpletes before it
can be accepted or canceled. Check that the abortable part is aborted
if it does not conplete before the triggering statenent conpl etes.
Check that the sequence of statements of the triggering alternative is
not executed.

C974006

Check that the sequence of statements of the triggering alternative of
an asynchronous sel ect statenment is executed if the triggering
statement is a protected entry call, and the entry is accepted

i medi ately. Check that the corresponding entry body is executed before
t he sequence of statenents of the triggering alternative. Check that
the abortable part is not executed.

C974007

Check that the sequence of statements of the triggering alternative of
an asynchronous sel ect statenent is not executed if the triggering
statenment is a protected entry call, and the entry is not accepted
before the abortable part conpletes. Check that execution continues

i medi ately followi ng the asynchronous sel ect.

C974008

Check that the abortable part of an asynchronous sel ect statenent is
not started if the triggering statement is a task entry call, and the
entry call is not queued. Check that the sequence of statenents of the

triggering alternative is executed after the abortable part is left.

C974009

Check that the abortable part of an asynchronous sel ect statenent is
not started if the triggering statenent is a task entry call, the
entry call is not queued and the entry call conpletes by propagating

an exception. Check that the exception is properly propagated to the
asynchronous sel ect statenent and thus the sequence of statenments of
the triggering alternative is not executed after the abortable part is
left. Check that the exception propagated by the entry call is
re-raised i mediately follow ng the asynchronous sel ect.

C974010

Check that the abortable part of an asynchronous sel ect statenent is
not started if the triggering statenent is a task entry call to a task
that has already term nated. Check that Tasking_Error is properly
propagated to the asynchronous sel ect statement and thus the sequence
of statenments of the triggering alternative is not executed after the
abortable part is left. Check that Tasking Error is re-raised

i medi ately following the asynchronous sel ect.

C974011

Check that the sequence of statements of the triggering alternative of
an asynchronous sel ect statenent is not executed if the triggering
statenment is a task entry call and the entry is not accepted before the
abortabl e part conpletes. Check that the call queued on the entry is
cancel | ed

C974012

Check that the abortable part of an asynchronous sel ect statenent is
aborted if it does not conplete before the triggering statenent

conpl etes, where the triggering statenent is a call on a protected
entry which is queued.

C974013

Check that the abortable part of an asynchronous sel ect statenent is
aborted if it does not conplete before the triggering statenent

conpl etes, where the triggering statement is a delay_until statenent.
Check that the sequence of statements of the triggering alternative is
executed after the abortable part is left.

C974014

Check that if the triggering alternative of an asynchronous sel ect
statenment is a delay and the abortable part conpletes before the del ay
expires then the delay is cancelled and the optional statenments in the
triggering part are not performed. |In particular, check the case of
the ATC i n non-tasking code.

C980001

Check that when a construct is aborted the execution of an Initialize
procedure as the last step of the default initialization of a
controll ed object is abort-deferred. Check that when a construct is
aborted the execution of a Finalize procedure as part of the
finalization of a controlled object is abort-deferred. Check that an
assignment operation to an object with a controlled part is an
abort-deferred operation.

C980002

Check that aborts are deferred during protected actions.

C980003

Check that aborts are deferred during the execution of an Initialize
procedure (as the last step of the default initialization of a
control l ed object), during the execution of a Finalize procedure (as
part of the finalization of a controlled object), and during an

assi gnment operation to an object with a controlled part.

CA11001

Check that a child unit can be used to provide an alternate view and

operations on a private type in its parent package. Check that a
child unit can be a package. Check that a WTH of a child unit
includes an inplicit WTH of its ancestor unit.

CA11002

Check that a public child can utilize its parent unit's visible
definitions.

CA11003

Check that a public grandchild can utilize its ancestor unit's visible
definitions.

CA110040
See CA110042. AM
CA110041
See CA110042. AM
CA110042

Check that the private part of a child library unit package can utilize
its parent unit's visible definitions.

CA110050
See CA110051. AM
CA110051

Check that entities and operations declared in a package can be used in
the private part of a child of a child of the package.

CA11006

Check that the private part of a child library unit can utilize its
parent unit's private definition

CA11007

Check that the private part of a grandchild library unit can utilize
its grandparent unit's private definition

CA11008

Check that a private child package can use entities declared in the
visible part of its parent unit.

CA11009

Check that a private child package can use entities declared in the
visible part of the parent unit of its parent unit.

CA11010

Check that a private child package can use entities declared in the
private part of its parent unit.

CA11011

Check that a private child package can use entities declared in the
private part of the parent unit of its parent unit.

CA11012

Check that a child package of a library level instantiation of a
generic can be the instantiation of a child package of the generic.
Check that the child instance can use its parent's decl arations and
operations, including a formal type of the parent.

CA11013

Check that a child function of a library level instantiation of a
generic can be the instantiation of a child function of the generic.
Check that the child instance can use its parent's decl arations and
operations, including a formal subprogramof the parent.

CA11014

Check that an instantiation of a child package of a generic package can
use its parent's declarations and operations, including a fornmal
package of the parent.

CA11015

Check that a generic child of a non-generic package can use its
parent's decl arations and operations. Check that the instantiation of
the generic child can correctly use the operations.

CAl11016

Check that a child of a non-generic package can be a private generic
package. Check that the private child instance can use its parent's

decl arations and operations. Check that the body of a public child

package can instantiate its sibling private generic package.

CA11017

Check that body of the parent package nay depend on one of its own
public children

CA11018

Check that body of the parent package nay depend on one of its own
public generic children

CA11019

Check that body of the parent package nay depend on one of its own
private generic children

CA11020

Check that body of the generic parent package can depend on one of its
own public generic children

CA11021

Check that body of the generic parent package can depend on one of its
own private generic children

CA11022
Check that body of a child unit can instantiate its generic sibling.
CA11A01

Check that type extended in a public child inherits primtive
operations fromits ancestor

CA11A02

Check that a type extended in a client of a public child inherits
primtive operations from parent.

CA11B01

Check that a type derived in a public child inherits primtive
operations from parent.

CA11B02

Check that a type derived in a client of a public child inherits
primtive operations from parent.

CA11001

Check that when primtive operations declared in a child package
override operations declared in ancestor packages, a client of the
child package inherits the operations correctly.

CA11002

Check that primtive operations declared in a child package override
operations declared in ancestor packages, and that operations on

cl ass-wi de types defined in the ancestor packages dispatch as
appropriate to these overriding inplenmentations.

CA11C03

Check that when a child unit is "withed", visibility is obtained to

all ancestor units naned in the expanded nane of the "w thed" child
unit. Check that when the parent unit is "used", the sinple name of a
"withed" child unit is nmade directly visible.

CA11D010

See CA11D013. AM

CA11D011
See CA11D013. AM
CA11D012
See CA11D013. AM
CA11D013

Check that a child unit can raise an exception that is declared in
parent.

CA11D02

Check that an exception declared in a package can be raised by a child
of a child package. Check that it can be renaned in the <child of the
child package and raised with the correct effect.

CA11D03

Check that an exception declared in a package can be raised by a

client of a child of the package. Check that it can be renanmed in the
client of the child of the package and raised with the correct

effect.

CA13001

Check that a separate protected unit declared in a non-generic child
unit of a private parent have the sane visibility into its parent, its
si blings, and packages on which its parent depends as is available at
the point of their declaration

CA13002

Check that two library child units and/or subunits may have the sane
sinmple nanmes if they have distinct expanded names.

CA13003

Check that separate subunits which share an ancestor may have the sane
nane if they have different fully qualified nanmes. Check the case of
separate subunits of separate subunits. This test is a change in
semantics from Ada 83 to Ada 9X

CA13A01

Check that subunits declared in non-generic child units of a public
parent have the sane visibility into its parent, its siblings (public
and private), and packages on which its parent depends as is available
at the point of their declaration.

CA13A02

Check that subunits declared in generic child units of a public parent
have the same visibility into its parent, its siblings (public and

private), and packages on which its parent depends as is available at
the point of their declaration

CB20001

Check that exceptions can be handled in accept bodies, and that a task
obj ect that has an exception handled in an accept body is still viable
for future use

CB20003

Check that exceptions can be raised, reraised, and handled in an
accessed subprogram

CB20004

Check that exceptions propagate correctly fromobjects of protected
types. Check propagation fromprotected entry bodi es.

CB20005

Check that exceptions are raised and properly handled locally in
prot ected operations.

CB20006

Check that exceptions are raised and properly handl ed (including
propagati on by reraise) in protected operations.

CB20007

Check that exceptions are raised and can be directly propagated to the
calling unit by protected operations.

CB20A02

Check that the nane and pertinent information about a user defined
exception are avail able to an enclosing programunit even when the
enclosing unit has no visibility into the scope where the exception is
decl ared and rai sed.

CB40005

Check that exceptions raised in non-generic code can be handl ed by a
procedure in a generic package. Check that the exception identity can
be properly retrieved fromthe generic code and used by the non-generic
code.

CB40A01

Check that a user defined exception is correctly propagated out of a
public child package.

CB40A020

See CB40A021. AM

CB40A021

Check that a user defined exception is correctly propagated froma
private child subprogramto its parent and then to a client of the
parent .

CB40A030
See CB40A031. AM
CB40A031

Check that a predefined exception is correctly propagated from a
private child package through a visible child package to a client.

CB40A04

Check that a predefined exception is correctly propagated out of a
public child function to a client.

CB41001

Check that the "ldentity attribute returns the unique identity of an
exception. Check that the Rai se_Exception procedure can raise an
exception that is specified through the use of the 'ldentity attribute,
and that Reraise_QCccurrence can re-rai se an exception occurrence using
an exception choi ce paraneter.

CB41002

Check that the nmessage string input paraneter in a call to the

Rai se_Exception procedure is associated with the rai sed exception
occurrence, and that the nessage string can be obtained using the
Exception_Message function with the associ ated Exception_QCccurrence
object. Check that Function Exception_Information is available to
provi de inpl enent ati on-defined information about the exception
occurrence.

CB41003

Check that an exception occurrence can be saved into an object of type
Exception_Cccurrence using the procedure Save_Cccurrence. Check that a
saved exception occurrence can be used to reraise another occurrence
of the sane exception using the procedure Reraise_Cccurrence. Check
that the function Save_Cccurrence will allocate a new object of type
Exception_Cccurrence_Access, and saves the source exception to the new
object which is returned as the function result.

CB41004

Check that Rai se_Exception and Rerai se_Qccurrence have no effect in the
case of Null _Id or Null_Cccurrence. Check that Exception_Message,
Exception_ldentity, Exception_Nanme, and Exception_lnformation raise
Constraint_Error for a Null_Qccurrence i nput parameter. Check that
calling the Save_Cccurrence subprograns with the Null _Gccurrence i nput
par anmeter saves the Null _Cccurrence to the appropriate target object,
and does not raise Constraint Error. Check that Null _Id is the default

initial value of type Exception_ld.
CCc30001

Check that if a non-overriding primtive subprogramis declared for a
type derived froma formal derived tagged type, the copy of that
subprogramin an instance can override a subprograminherited fromthe
actual type.

CC30002

Check that an explicit declaration in the private part of an instance
does not override an inplicit declaration in the instance, unless

t he corresponding explicit declaration in the generic overrides a
corresponding inplicit declaration in the generic. Check for primtive
subprograns of tagged types.

CC40001

Check that adjust is called on the value of a constant object created
by the evaluation of a generic association for a formal object of node
in. Check that those values are al so subsequently finalized.

CC50001

Check that, in an instance, each inplicit declaration of a predefined
operator of a formal tagged private type declares a view of the
correspondi ng predefined operator of the actual type (even if the
operator has been overridden for the actual type). Check that the body
executed is determ ned by the type and tag of the operands.

CC50A01

Check that a formal paraneter of a library-level generic unit may be a
formal tagged private type. Check that a nonlinmted tagged type may be
passed as an actual. Check that if the formal type is indefinite, both
indefinite and definite types may be passed as actuals.

CC50A02

Check that a nonlimted tagged type may be passed as an actual to a
formal (non-tagged) private type. Check that if the formal type has an
unknown di scrimnant part, a class-wi de type may al so be passed as an
actual .

CC51001

Check that a formal paraneter of a generic package may be a formal
derived type. Check that the formal derived type may have an unknown

di scrimnant part. Check that the ancestor type in a formal derived
type definition my be a tagged type, and that the actual paraneter may
be a descendant of the ancestor type. Check that the formal derived
type belongs to the derivation class rooted at the ancestor type;
specifically, that conmponents of the ancestor type may be referenced
within the generic. Check that if a formal derived subtype is
indefinite then the actual may be either definite or indefinite.

CC51002

Check that, for formal derived tagged types, the formal paraneter nanes
and default expressions for a primtive subprogramin an instance are
determ ned by the primtive subprogramof the ancestor type, but that
the primtive subprogram body executed is that of the actual type.

CC51003

Check that if the ancestor type of a formal derived type is a conposite
type that is not an array type, the formal type inherits conponents,

i ncluding discrimnants, fromthe ancestor type. Check for the case
where the ancestor type is a record type, and the formal derived type
is declared in a generic subprogram

CC51004

Check that if the ancestor type of a formal derived type is a conposite
type that is not an array type, the formal type inherits conponents,

i ncluding discrimnants, fromthe ancestor type. Check for the case
where the ancestor type is a tagged type, and the formal derived type
is declared in a generic subprogram

CC51006

Check that, in an instance, each inplicit declaration of a prinmtive
subprogram of a formal (nontagged) derived type declares a view of the
corresponding primtive subprogram of the ancestor type, even if the
subprogram has been overridden for the actual type. Check that for a
formal derived type with no discrimnant part, if the ancestor subtype
i s an unconstrained scal ar subtype then the actual may be either
constrai ned or unconstrai ned.

CC51007

Check that a generic formal derived tagged type is a private extension
Specifically, check that, for a generic fornal derived type whose
ancestor type has abstract primtive subprograns, neither the formal
derived type nor its descendants need be abstract. Check that objects
and conponents of the formal derived type and its nonabstract
descendants may be decl ared and al |l ocated, as may nonabstract functions
returning these types, and that aggregates of nonabstract descendants
of the formal derived type are legal. Check that calls to the abstract
primtive subprogranms of the ancestor dispatch to the bodies
corresponding to the tag of the actual paraneters.

CC51A01

Check that, in an instance, each inplicit declaration of a user-defined
subprogram of a formal derived record type declares a view of the
corresponding primtive subprogram of the ancestor, even if the
primtive subprogram has been overridden for the actual type.

CC51B03

Check that the attribute S Definite, where Sis an indefinite formal
private or derived type, returns true if the actual corresponding to S

is definite, and returns fal se otherw se
CC51D01

Check that, in an instance, each inplicit declaration of a user-defined
subprogram of a formal private extension declares a view of the
corresponding primtive subprogram of the ancestor, and that if the tag
inacall is statically determned to be that of the formal type, the
body executed will be that corresponding to the actual type. Check
subprograns declared within a generic formal package. Check for the
case where the actual type passed to the formal private extension is a
specific tagged type. Check for several types in the sane cl ass.

CC51D02

Check that, in an instance, each inplicit declaration of a user-defined
subprogram of a fornmal private extension declares a view of the
corresponding primtive subprogram of the ancestor, and that if the tag
inacall is statically determned to be that of the formal type, the
body executed will be that corresponding to the actual type. Check
subprograns declared within a generic formal package. Check for the
case where the actual type passed to the formal private extension is a
cl ass-wi de type. Check for several types in the sanme class.

CC54001

Check that a general access-to-constant type nmay be passed as an actua
to a generic formal access-to-constant type.

CC54002

Check that a general access-to-variable type may be passed as an actua
to a generic formal general access-to-variable type. Check that
desi gnated objects may be read and updated through the access val ue.

CC54003

Check that a general access-to-subprogramtype may be passed as an
actual to a generic formal access-to-subprogramtype. Check that
desi gnat ed subprograns may be called by dereferencing the access
val ues.

CC54004

Check that the designated type of a generic formal pool-specific access
type may be cl ass-wi de. Check that calls to primtive subprograns in
the instance dispatch to the appropri ate bodi es when the controlling
operand is a dereference of an object of the access- to-class-w de

type.
CC70001

Check that the tenplate for a generic formal package may be a child
package, and that a child instance which is an instance of the tenplate
may be passed as an actual to the formal package. Check that the
visible part of the generic formal package includes the first list of
basi c declarative itens of the package specification

CC70002

Check that a formal package actual part may specify actual paraneters
for a generic formal package. Check that these actual paraneters may be
formal types, formal objects, and formal subprograns. Check that the
visible part of the generic formal package includes the first list of
basi c declarative itens of the package specification, and that if the
formal package actual part is (<>), it also includes the generic formal
part of the tenplate for the formal package.

CC70003

Check that the actual passed to a formal package may be a formal
access-to-subprogramtype. Check that the visible part of the generic
formal package includes the first |list of basic declarative itens of
t he package specification

CC70A01

Check that the visible part of a generic formal package includes the
first list of basic declarative itens of the package specification
Check for a generic package which declares a formal package with (<>)
as its actual part.

CC70A02

Check that the visible part of a generic formal package includes the
first list of basic declarative itens of the package specification
Check for a generic subprogram which declares a formal package with
(<>) as its actual part.

CC70B0O1

Check that a formal package actual part may specify actual paraneters
for a generic formal package. Check that a use clause in the generic
formal part provides direct visibility of declarations within the
generic formal package. Check that the scope of such a use clause
extends to the generic subprogram body. Check that the visible part of
the generic formal package includes the first |list of basic declarative
items of the package specification. Check the case where the fornal
package is declared in a generic subprogram

CC70B02

Check that a formal package actual part may specify actual paraneters
for a generic formal package. Check that such an actual paraneter nmay
be a formal parameter of a previously declared formal package (with a
(<>) actual part). Check that a use clause in the generic formal part
provides direct visibility of declarations within the generic fornal
package, including formal paraneters (if the formal package has a (<>)
actual part). Check that the scope of such a use clause extends to the
generi c subprogram body. Check that the visible part of the generic
formal package includes the first |list of basic declarative itens of

t he package specification. Check the case where the formal package is
declared in a generic package.

CCr70001

Check that a generic formal package is an instance. Specifically, check
that a generic formal package may be passed as an actual paraneter in
an instantiation of a generic package. Check that the visible part of
the generic formal package includes the first |list of basic declarative
items of the package specification

CC70002

Check that a generic formal package is an instance. Specifically, check
that a generic formal package may be passed as an actual paraneter to
anot her generic formal package. Check that the visible part of the
generic formal package includes the first |list of basic declarative
items of the package specification

CD10001

Check that representation itens may contain nonstatic expressions in
the case that each expression in the representation itemis a nane
that statically denotes a constant declared before the entity.

CD20001

Check that for packed records the conponents are packed as tightly as
possi bl e subject to the Size of the conponent subtypes. Specifically
check that Bool ean objects are packed one to a bit. Check that the
Conmponent _Si ze for a packed array type is the value which is |ess than
or equal to the Size of the conponent type, rounded up to the nearest
factor of the word size

CD30001

Check that X Address produces a useful result when X is an aliased

obj ect. Check that X Address produces a useful result when X is an
object of a by-reference type. Check that X Address produces a usefu
result when X is an entity whose Address has been specified. Check
that aliased objects and subconponents are all ocated on storage el ement
boundari es. Check that objects and subconponents of by reference types
are allocated on storage el enent boundaries. Check that for an array
X, X Address points at the first conponent of the array, and not at the
array bounds.

CD30002

Check that the inplenentati on supports Alignnments for subtypes and
objects specified as factors and nultiples of the nunber of storage
el ements per word, unless those val ues cannot be | oaded and stored.
Check that the largest alignnent returned by default is supported.
Check that the inplenentation supports Alignments supported by the
target linker for stand-alone library-Ilevel objects of statically
constrai ned subtypes.

CD30003

Check that a Size clause for an object is supported if the specified
size is at least as large as the subtype's size, and correspond to a

size in storage elenents that is a nultiple of the object's (non-zero)
Ali gnnent .

CD30004

Check that the unspecified Size of static discrete subtypes is the
nunber of bits needed to represent each val ue belonging to the
subtype using an unbi ased representati on, where space for a sign bit
is provided only in the event the subtype contains negative val ues.
Check that for first subtypes specified Sizes are supported
reflecting this representation. Check that for subtypes inplenented
with levels of indirection, the Size includes the size of the

poi nters, not the size of what is pointed at.

CD30005
Check that Address clauses are supported for inported subprograns.
CD33001

Check that Component_Sizes that are a factor of the word size are
supported. Check that for such Conponent _Sizes arrays contain no gaps
bet ween conponents.

CD33002

Check that Component_Sizes that are nmultiples of the word size are
supported. Check that for such Conponent _Sizes arrays contain no gaps
bet ween conponents.

CD40001

Check that Enuneration_Representation_C auses are supported for codes
in the range System M n_Int..System Max_Int.

CD70001

Check that package Systemincludes Max_Base_Digits, Address,

Nul | _Address, Wrd_Size, functions "<", "<=", ">" ">=" "=" (with
Addr ess paraneters and Bool ean results), Bit_Oder, Default_Bit_Order
Any Priority, Interrupt_Priority, and Default_Priority. Check that
package System Storage_ El enents includes all required types and
operations.

CD72A01

Check that the package System Address_To_Access_Conversi ons may be
instantiated for various sinple types. Check that To_Pointer and
To_Address are inverse operations. Check that To_Poi nter (X Address)
equal s X Unchecked_Access for an X that allows Unchecked_Access. Check
that To_Pointer(Null _Address) returns null.

CD72A02
Check that the package System Address_To_Access_Conversi ons may be

instantiated for various conposite types. Check that To_Poi nter and
To_Address are inverse operations. Check that To_Poi nter (X Address)

equal s X Unchecked_Access for an X that allows Unchecked_Access. Check
that To_Pointer(Null _Address) returns null.

CD90001

Check that Unchecked_Conversion is supported and is reversible in the
cases where: Source' Size = Target'Size

Source' Ali gnnent = Target' Al i gnnment Source and Tar get
are both represented contiguously Bit pattern in Source is a

meani ngf ul val ue of Target type

CD92001

Check that if X denotes a scalar object, X Valid yields true if an only
if the object denoted by X is normal and has a valid representation

CDBOAO1

Check that a storage pool may be user_determ ned, and that storage is
allocated by calling Allocate. Check that a storage.pool may be
specified using 'Storage Pool and that S Storage_Pool denotes the
storage pool of the type S

CDBOAO2

Check that several access types can share the sane pool. Check that
any exception propagated by Allocate is propagated by the all ocator
Check that for an access type S, S Max_Size_|In_Storage_El enents denotes
t he maxi mum val ues for Size_ In_Storage_ Elenents that will be requested
via Al ocate.

CDEO001

Check that the foll owi ng nanes can be used in the declaration of a
generic formal paraneter (object, array type, or access type) w thout
causing freezing of the named type: (1) The nane of a private type, (2)
A nane that denotes a subtype of a private type, and (3) A nane that
denotes a conposite type with a subconponent of a private type (or
subtype). Check for untagged and tagged types.

CXA3001

Check that the character classification functions defined in package
Ada. Char act ers. Handl i ng produce correct results when provided constant
argunents from package Ada. Characters. Latin_1.

CXA3002

Check that the conversion functions for Characters and Strings defined
i n package Ada. Characters.Handling provide correct results when given
character/string input paraneters.

CXA3003
Check that the functions defined in package Ada. Characters. Handling for

use in classifying and converting characters between the | SO 646 and
type Character sets produce the correct results with both Character and

String input val ues.
CXA3004

Check that the functions defined in package Ada. Characters. Handling for
classification of and conversion between Wde Character and Character
val ues produce correct results when given the appropriate Character and
String inputs.

CXA4001

Check that the types, operations, and other entities defined within the
package Ada. Strings. Maps are avail abl e and/ or produce correct results.

CXA4002

Check that the subprograns defined i n package Ada. Strings. Fi xed are
avai l abl e, and that they produce correct results. Specifically, check
t he subprogranms Index, "*" (string constructor function), Count, Trim
and Repl ace_Slice.

CXA4003

Check that the subprograns defined i n package Ada. Strings. Fi xed are
avai | abl e, and that they produce correct results. Specifically, check
t he subprogranms Index, |ndex_Non_Bl ank, Head, Tail, Translate,

Fi nd_Token, Myve, Overwite, and Replace_Slice.

CXA4004

Check that the subprograns defined i n package Ada. Strings. Fi xed are
avai | abl e, and that they produce correct results. Specifically, check
t he subprogranms Count, Find_Token, Index, |ndex_Non_Bl ank, and Mbove.

CXA4005

Check that the subprograns defined i n package Ada. Strings. Fi xed are
avai | abl e, and that they produce correct results. Specifically, check
t he subprograns Del ete, Head, Insert, Overwite, Replace_Slice, Tail
Trim and "*".

CXA4006

Check that the subprograns defined in package Ada. Strings. Bounded are
avai | abl e, and that they produce correct results. Specifically, check
t he subprogranms Length, Slice, "&", To_Bounded_String, Append, I|ndex,
To_String, Replace _Slice, Trim Overwite, Delete, Insert, and
Transl at e.

CXA4007

Check that the subprograns defined in package Ada. Strings. Bounded are
avai | abl e, and that they produce correct results. Specifically, check
t he subprogranms Append, Count, El enent, Find_Token, Head,

I ndex_Non_Bl ank, Repl ace_El ement, Replicate, Tail, To_Bounded_String,
&, Sttt T "<=") and "*".

CXA4008

Check that the subprograns defined in package Ada. Strings. Bounded are
avai | abl e, and that they produce correct results, especially under
conditions where truncation of the result is required. Specifically,
check the subprograns Append, Count with non-ldentity maps, Index with
non-ldentity maps, Index with Set paraneters, Insert (function and
procedure), Replace_Slice (function and procedure), To_Bounded_Stri ng,
and Transl at e.

CXA4009

Check that the subprograns defined in package Ada. Strings. Bounded are
avai | abl e, and that they produce correct results, especially under
conditions where truncation of the result is required. Specifically,
check the subprograms Overwite (function and procedure), Delete,
Function Trim (bl anks), Trim (Set characters, function and procedure),
Head, Tail, and Replicate (characters and strings).

CXA4010

Check that the subprograns defined in package Ada. Strings. Unbounded are
avai |l abl e, and that they produce correct results. Specifically, check
t he subprogranms To_String, To_Unbounded String, Insert, "&', "*",
Length, Slice, Replace_Slice, Overwite, Index, |Index_Non_Bl ank, Head,
Tail, and "=", "<=",6 ">=",

CXA4011

Check that the subprograns defined in package Ada. Strings. Unbounded are
avai | abl e, and that they produce correct results. Specifically, check
t he subprograns To_Unbounded_String, "&', ">", "<", El enent,

Repl ace_El ement, Count, Find_Token, Translate, Trim Delete, and "*".

CXA4012

Check that the types, operations, and other entities defined within the
package Ada. Strings. Wde_Maps are avail abl e and produce correct
results.

CXA4013

Check that the subprograns defined in package Ada. Strings. Wde_Fi xed
are avail able, and that they produce correct results. Specifically,
check the subprograns Index, "*" (Wde_String constructor function),
Count, Trim and Replace_Slice.

CXA4014

Check that the subprograns defined in package Ada. Strings. Wde_Fi xed
are avail able, and that they produce correct results. Specifically,
check the subprograns Find_Token, Head, Index, |ndex_Non_Bl ank, Mve,
Overwite, and Replace_Slice, Tail, and Translate. Use the
access-t o- subprogram mappi ng version of Translate (function and
procedure).

CXA4015

Check that the subprograns defined in package Ada. Strings. Wde_Fi xed
are avail able, and that they produce correct results. Specifically,
check the subprograns Count, Find_Token, Index, Index_Non_Bl ank, and
Move.

CXA4016

Check that the subprograns defined in package Ada. Strings. Wde_Fi xed
are avail able, and that they produce correct results. Specifically,
check the subprograns Del ete, Head, Insert, Overwite, Replace_Slice,
Tail, Trim and "*".

CXA4017

Check that the subprograns defined in package Ada. Stri ngs. Wde_Bounded
are available, and that they produce correct results. Specifically,
check the subprograns Append, Delete, Index, Insert , Length,
Overwite, Replace_Slice, Slice, "&", To_Bounded_Wde_String
To_Wde_String, Translate, and Trim

CXA4018

Check that the subprograns defined in package Ada. Strings. Wde_Bounded
are available, and that they produce <correct results. Specifically,
check the subprogranms Append, Count, Elenent, Fi nd_Token, Head,

I ndex_Non_Bl ank, Repl ace_El ement, Replicate, Tail
To_Bounded_Wde_String, "&', ">", "<", ">=" "<=" and "*".

CXA4019

Check that the subprograns defined in package Ada. Stri ngs. Wde_Bounded
are avail able, and that they produce correct results, especially under

conditions where truncation of the result is required. Specifically,
check the subprograns Append, Count with non-ldentity maps, Index with
non-ldentity maps, Index with Set paraneters, Insert (function and

procedure), Replace_Slice (function and procedure),
To_Bounded_Wde_String, and Transl ate (function and procedure).

CXA4020

Check that the subprograns defined in package Ada. Stri ngs. Wde_Bounded
are available, and that they produce correct results, especially under
conditions where truncation of the result is required. Specifically,
check the subprograms Overwite (function and procedure), Delete,
Function Trim (bl anks), Trim (Set w de characters, function and
procedure), Head, Tail, and Replicate (w de characters and wi de
strings).

CXA4021

Check that the subprograns defined in package

Ada. Strings. Wde_Unbounded are avail abl e, and that they produce
correct results. Specifically, check the subprograns Head, I|ndex,
I ndex_Non_Bl ank, Insert, Length, Overwite, Replace_Slice, Slice,
Tail, To_Wde_String, To_Unbounded_Wde_String, "*", "&", and "="
=" s ">=" .

CXA4022

Check that the subprograns defined in package

Ada. Strings. Wde_Unbounded are avail able, and that they produce
correct results. Specifically, check the subprogranms Count, El enent,
I ndex, Repl ace_El enent, To_Unbounded_Wde_String, and "&", ">", "<"

CXA4023

Check that the subprograns defined in package

Ada. Strings. Wde_Unbounded are avail abl e, and that they produce
correct results. Specifically, check the subprograns Del ete,
Find _Token, Translate, Trim and "*".

CXA4024

Check that the function "-", To_Ranges, To_Domai n, and To_Range are
avai l abl e in the package Ada. Strings. Maps, and that they produce
correct results based on the Character_Set/ Character_Mppi ng i nput
provi ded.

CXA4025

Check that the functionality found in packages Ada. Strings. Wde_Maps,
Ada. Strings. Wde_Fi xed, and Ada. Strings. Wde_Maps. Wde_Constants is
avai | abl e and produces correct results.

CXA4026

Check that Ada.Strings. Fixed procedures Head, Tail, and Trim as well
as the versions of subprograns Translate (procedure and function),

I ndex, and Count, available in the package which use a

Maps. Char act er _Mappi ng_Functi on i nput parameter, produce correct
results.

CXA4027

Check that versions of Ada. Strings.Bounded subprograns Transl ate,
(procedure and function), Index, and Count, which use the

Maps. Char act er _Mappi ng_Functi on i nput paramneter, produce correct
results.

CXA4028

Check that Ada. Strings.Bounded procedures Append, Head, Tail, and
Trim and rel ational operator functions "=", ">" 6 ">=" "<" "<=" wth
par amet er conbi nations of type String and Bounded_String, produce

correct results.

CXA4029

Check that the functionality found in packages Ada. Strings. Wde_Maps,
Ada. Strings. Wde_Bounded, and Ada. Strings. Wde_Maps. Wde_Constants is
avai | abl e and produces correct results.

CXA4030

Check that Ada. Strings. Unbounded versions of subprograns Transl ate
(procedure and function), Index, and Count, which use a

Maps. Char act er _Mappi ng_Functi on i nput paramneter, produce correct
results.

CXA4031

Check that the subprograns defined in package Ada. Strings. Unbounded are
avai |l abl e, and that they produce correct results. Specifically, check
the functions To_Unbounded_String (version with Length parameter), "=",
<ty =, "> ">=" (all with String-Unbounded String paraneter mXx),
as well as three versions of Procedure Append.

CXA4032

Check that procedures defined in package Ada. Strings. Unbounded are
avai |l abl e, and that they produce correct results. Specifically, check
t he procedures Replace_Slice, Insert, Overwite, Delete, Trim (2
versions), Head, and Tail

CXA4033

Check that the functionality found in packages Ada. Strings. Wde_Maps,
Ada. Strings. Wde_Unbounded, and Ada. Strings. Wde_Mips. Wde_Const ant s
is avail abl e and produces correct results.

CXA5011

Check that, for both Fl oat _Random and Di scret e_Random packages, the
following are true: 1) two objects of type Generator are initialized to
the sane state. 2) when the Function Reset is used to reset two
generators to different tinme-dependent states, the resulting random
values from each generator are different. 3) when the Function Reset
uses the same integer initiator to reset two generators to the sanme
state, the resulting random val ues from each generator are identical

4) when the Function Reset uses different integer initiator values to
reset two generators, the resulting random nunbers are different.

CXA5012

Check that, for both Fl oat _Random and Di scret e_Random packages, the
following are true: 1) the procedures Save and Reset can be used to
save the specific state of a random nunber generator, and then restore
the specific state to the generator follow ng sone internediate
generator activity. 2) the Function |Image can be used to obtain a
string representation of the state of a generator; and that the
Function Value will transforma string representation of the state of a
random nunber generator into the actual state object. 3) a call to
Function Value, with a string value that is not the imge of any
generator state, will raise Constraint_Error

CXA5013
Check that a discrete random nunber generator will yield each value in

its result subtype in a finite nunber of calls, provided that the
nunber of such val ues does not exceed 2**15.

CXA5015

Check that the follow ng representation-oriented attributes are
avai | abl e and that the produce correct results: 'Denorm

' Si gned_Zeros, 'Exponent 'Fraction, 'Conpose, 'Scaling, 'Floor
"Ceiling, 'Rounding, 'Unbiased_Rounding, 'Truncation, 'Remainder
' Adj acent, ' Copy_Sign, 'Leading_ Part, 'Machine, and ' Mdel _Small
CXA5A01

Check that the functions Sin and Sinh provide correct results.
CXA5A02

Check that the functions Cos and Cosh provide correct results.

CXA5A03

Check that the functions Tan, Tanh, and Arctanh provide correct
results.

CXA5A04

Check that the functions Cot, Coth, and Arccoth provide correct
results.

CXA5A05

Check that the functions Arcsin and Arcsinh provide correct results.
CXA5A06

Check that the functions Arccos and Arccosh provide correct results.
CXA5A07

Check that the function Arctan provides correct results.

CXA5A08

Check that the function Arccot provides correct results.

CXA5A09

Check that the function Log provides correct results.

CXA5A10

Check that the functions Exp and Sgrt, and the exponentiation operator
"**" provide correct results.

CXA8001
Check that all elements to be transferred to a sequential file of node

Append_File will be placed following the last elenment currently in the
file. Check that it is possible to append data to a file that has

been previously appended to. Check that the predefined procedure Wite
will place an element after the last elenment in the file in node
Append_Fi |l e.

CXA8002

Check that resetting a file using node Append_File allows for the
witing of elements to the file starting after the last elenment in the
file. Check that the result of function Name can be used on a
subsequent reopen of the file. Check that a node change occurs on reset
of a file to/fromnode Append_File.

CXA8003
Check that Append_File node has not been added to package Direct_IQO
CXA9001

Check that the operations defined in the generic package

Ada. Storage_| O provide the ability to store and retrieve objects which
may include inplicit levels of indirection in their inplenmentation
froman in-nenory buffer.

CXA9002

Check that the operations defined in the generic package
Ada. Storage_| O provide the ability to store and retrieve objects of
tagged types fromin-nenory buffers.

CXAA001

Check that the Line_Length and Page Length maximuns for a Text 1O file
of node Append_File are initially zero (unbounded) after a Create,
Open, or Reset, and that these values can be nodified using the
procedures Set Line_Length and Set Page_Length. Check that setting the
Li ne_Length and Page Length attributes to zero results in an unbounded
Text _10file. Check that setting the line |length when in Append_Mde
doesn't change the length of lines previously witten to the Text 10O
file.

CXAA002

Check that the procedures New Page, Set Line, Set_Col, and New_Line
subprograns performproperly on a text file created with node
Append_File. Check that the attributes Page, Line, and Colum are al
set to 1 following the creation of a text file with node Append_File.
Check that the functions Page, Line, and Col perform properly on a text
file created with node Append_File. Check that the procedures Put and
Put _Line performproperly on text files created with node Append_Fil e.
Check that the procedure Set_Line sets the current |ine nunber to the
val ue specified by the parameter "To" for text files created with node
Append_Fi | e. Check that the procedure Set_Col sets the current col umm
nunber to the value specified by the paraneter "To" for text files
created with node Append_Fil e.

CXAA003

Check that the procedures New Page, Set Line, Set_Col, and New_Line
subprograns performproperly on a text file reset (fromQut_File) wth
node Append_File. Check that the attributes Page, Line, and Colum are
all set to 1 following the reset of a text file with node Append_File.
Check that the functions Page, Line, and Col perform properly on a text
file reset with node Append_File. Check that the procedures Put and

Put _Line performproperly on text files reset with node Append_File.
Check that the procedure Set_Line sets the current |ine nunber to the
val ue specified by the parameter "To" for text files reset with node
Append_File. Check that Set_Line has no effect if the specified line
equal s the current line. Check that the procedure Set_Col sets the
current columm nunber to the value specified by the paraneter "To" for
text files reset with node Append_File.

CXAA004

Check that the procedures New Page, Set Line, Set_Col, and New_Line
performproperly on a text file opened with node Append_File. Check
that the attributes Page, Line, and Columm are all set to 1 follow ng
the opening of a text file with node Append_File. Check that the
functions Page, Line, and Col performproperly on a text file opened
wi th node Append_File. Check that the procedures Put and Put_Line
performproperly on text files opened with node Append_File. Check that
the procedure Set _Line sets the current |ine nunber to the val ue
specified by the paranmeter "To" for text files opened with node
Append_File. Check that the procedure Set_Col sets the current colum
nunber to the value specified by the paraneter "To" for text files
reset with node Append_File.

CXAA005

Check that the procedure Put, when called with string paraneters, does
not update the line nunber of a text file of node Append_File, when the
line length is unbounded (i.e., only the colum nunber is updated).
Check that a call to the procedure Put with a null string argunent has
no measurable effect on a text file of node Append_File.

CXAA006

Check that for a bounded Iine length text file of node Append_File,
when the nunber of characters to be output exceeds the nunber of
colums remaining on the current line, a call to Put will output
characters of the string sufficient to fill the remaining colums of
the line (up to line length), then output a line term nator, reset the
col um nunber, increnent the line nunber, then output the bal ance of
the item Check that the procedure Put does not raise Layout_ Error
when the nunber of characters to be output exceeds the line | ength of
a bounded text file of node Append_Fil e.

CXAA007

Check that the capabilities of Text_I O lInteger_|O performcorrectly on
files of Append_File node, for instantiations with integer and

user -defi ned subtypes. Check that the formatti ng paraneters avail abl e
in the package can be used and nodified successfully in the storage and
retrieval of data

CXAA008

Check that the capabilities provided in instantiations of the

Ada. Text _| O Fi xed_I O package operate correctly when the node of the
file is Append_File. Check that Fixed_|O procedures Put and Get
properly transfer fixed point data to/fromdata files that are in
Append_Fil e node. Check that the formatting paranmeters available in

t he package can be used and nodified successfully in the appendi ng and
retrieval of data

CXAA009

Check that the capabilities provided in instantiations of the

Ada. Text _| O Fl oat _I O package operate correctly when the node of the
file is Append_File. Check that Float_I O procedures Put and Cet
properly transfer floating point data to/fromdata files that are in
Append_Fil e node. Check that the formatting paranmeters available in

t he package can be used and nodified successfully in the appendi ng and
retrieval of data

CXAA010

Check that the operations defined in package Ada. Text_ 1O Decimal 1O are
avai l abl e, and that they function correctly when used for the
i nput/out put of Decimal types.

CXAAO011

Check that the operations of Text _|O Enuneration_|I O performcorrectly
on files of Append_File node, for instantiations using enuneration
types. Check that Enuneration_| O procedures Put and Get properly
transfer enunmeration data to/fromdata files. Check that the formatting
paranmeters avail able in the package can be used and nodified
successfully in the storage and retrieval of data.

CXAA012

Check that the exception Modde Error is raised when an attenpt is nmade
to read from (performa Get_Line) or use the predefined End_ O _File
function on a text file with node Append_File.

CXAA013

Check that the exception Modde Error is raised when an attenpt is nmade
to skip a line or page using the predefined Skip_Line and Ski p_Page
procedures on a text file with node Append_File.

CXAA014

Check that the exception Mdde Error is raised when an attenpt is nmade
to check for the end of a line or page using the predefined functions
End_O _Line or End_O _Page on a text file with node Append_File.
CXAA015

Check that the exception Status _Error is raised when an attenpt is nade
to create or open a file in Append_File node when the file is already

open. Check that the exception Nane_Error is raised by procedure Qpen
when attenpting to open a file in Append_Fil e node when the nane
supplied as the filenanme does not correspond to an existing externa
file.

CXAAO016

Check that the type File_Access is available in Ada.Text_ 1O, and that
objects of this type designate File_Type objects. Check that function
Set Error will set the current default error file. Check that versions
of Ada. Text 10O functions Standard_Il nput, Standard_Cutput,
Standard_Error return File_Access val ues designating the standard
system i nput, output, and error files. Check that versions of

Ada. Text _1 O functions Current I nput, Current_Qutput, Current_Error
return File_Access val ues designating the current systeminput, output,
and error files.

CXAA017

Check that Ada.Text_ 10O function Look_Ahead sets paraneter End_O _Line
to True if at the end of a line;, otherwi se check that it returns the
next character froma file (without consuming it), while setting
End O Line to Fal se. Check that Ada. Text |0 function Get | nmedi ate
will return the next control or graphic character in paranmeter Item
fromthe specified file. Check that the version of Ada.Text_ 1O
function Get_Inmediate with the Avail able paranmeter will, if a
character is available in the specified file, return the character in
paranmeter Item and set parameter Available to True.

CXAA018

Check that the subprograns defined in the package Text | O Modular_IO
provide correct results.

CXAB0OO1

Check that the operations defined in package Wde_Text 10 all ow for
t he i nput/output of Wde_Character and Wde_String data

CXAC001

Check that the attribute T"Wite will, for any specific non-limted
type T, wite an itemof the subtype to the stream Check that the
attribute T"Read will, for a specific non-limted type T, read a val ue

of the subtype fromthe stream
CXAC002

Check that the subprograns defined in package Ada. Streans. Stream | 0O are
accessi ble, and that they provide the appropriate functionality.

CXAC003

Check that the correct exceptions are raised when inproperly
mani pul ating streamfile objects.

CXAC004

Check that the Stream Access type and Stream function found i n package
Ada. Text 1 O Text _Streans allows a text file to be processed with the
functionality of streans.

CXACAO01

Check that the default attributes 'Wite and ' Read work properly when
used with objects of a variety of types, including records with
default discrimnants, records w thout default discrimnants, but

whi ch have the discrimnant described in a representation clause for
the type, and arrays.

CXACA02

Check that user defined subprograns can override the default attributes
'"Read and "Wite using attribute definition clauses. Use objects of
record types.

CXACBO1

Check that the default attributes 'Input and ' Qutput work properly
when wused with objects of a variety of types, including
two- di nensi onal arrays and records w thout default discrimnants.

CXACB02

Check that user defined subprograns can override the default attributes
"Input and 'Qutput using attribute definition clauses, when used wth
objects of discrimnated record and nul ti-di mensional array types.

CXACC01

Check that the use of 'Class' Qutput and 'C ass' I nput allow stream
mani pul ati on of objects of non-limted class-w de types.

CXAF001

Check that an inplenmentation supports the functionality defined in
Package Ada. Command_Li ne.

CXB2001

Check that subprogranms Shift_Left, Shift_Right,

Shift_Right_Arithnetic, Rotate_ Left, and Rotate_ Ri ght are avail abl e and
produce correct results for values of signed and nodul ar integer types
of 8 hits.

CXB2002

Check that subprogranms Shift_Left, Shift_Right,

Shift_Right_Arithnetic, Rotate Left, and Rotate_ Ri ght are avail able and
produce correct results for values of signed and nodul ar integer types
of 16 bits.

CXB2003

Check that subprograms Shift_Left, Shift_Right,

Shift_Right_Arithnetic, Rotate Left, and Rotate_Ri ght are avail able and
produce correct results for values of signed and nodul ar integer types
of 32 bits.

CXB3001

Check that the specifications of the package Interfaces.C are avail able
for use.

CXB3002

Check that the specifications of the package Interfaces.C Strings are
avai |l abl e for use.

CXB3003

Check that the specifications of the package Interfaces.C Pointers are
avai l abl e for use.

CXB3004

Check that the functions To_C and To_Ada map between the Ada type
Character and the C type char. Check that the function

Is Nul _Terminated returns True if the char_array paraneter contains
nul , and otherw se False. Check that the function To_C produces a
correct char_array result, with | ower bound of 0, and | ength dependent
upon the Itemand Append_Nul parameters. Check that the function
To_Ada produces a correct string result, with |ower bound of 1, and

| engt h dependent upon the Itemand TrimNul paraneters. Check that
the function To_Ada raises Term nator_Error if the paraneter Tri m Nul
is set to True, but the actual Item paraneter does not contain the nu
char.

CXB3005

Check that the procedure To_C converts the character elenents of a
string paraneter into char elenments of the char_array paraneter

Target, with nul termnation if parameter Append_Nul is true. Check
that the out paranmeter Count of procedure To Cis set to the
appropriate value for both the nul/no nul term nated cases. Check that
Constraint_Error is propagated by procedure To_ Cif the Ilength of the
char _array paranmeter Target is not sufficient to hold the converted
string value. Check that the Procedure To_Ada converts char el enents
of the char_array paranmeter Itemto the correspondi ng character

el ements of string out paraneter Target. Check that Constraint_Error
is propagated by Procedure To_Ada if the Ilength of string paraneter
Target is not long enough to hold the converted char_array val ue.
Check that Terminator_Error is propagated by Procedure To_Ada if the
parameter TrimMNul is set to True, but the actual I|tem paraneter
contains no nul char.

CXB3006
Check that the function To_C maps between the Ada type Wde_Character

and the C type wchar_t. Check that the function To_Ada naps between
the C type wchar_t and the Ada type Wde_Character. Check that the

function Is_Nul _Term nated returns True if the wchar_array paraneter
contains wide nul, and otherwi se False. Check that the function To C
produces a correct wchar_array result, with | ower bound of 0, and

| engt h dependent upon the Itemand Append_Nul paraneters. Check that
the function To_Ada produces a correct wide_string result, with | ower
bound of 1, and | ength dependent upon the Itemand Tri m Nul
paranmeters. Check that the function To_Ada raises Term nator_Error if
the paranmeter TrimMNul is set to True, but the actual I|tem paraneter
does not contain the wi de _nul wchar t.

CXB3007

Check that the procedure To_C converts the Wde_Character elenents of a
Wde_String paraneter into wchar_t elenments of the wchar_array
paranmeter Target, with wide _nul termination if paraneter Append_Nul is
true. Check that the out parameter Count of procedure To Cis set to
the appropriate value for both the wi de_nul/no wi de_nul term nated
cases. Check that Constraint_Error is propagated by procedure To _C if
the Iength of the wchar_array paranmeter Target is not sufficient to
hold the converted Wde_String value. Check that the Procedure To_Ada
converts wchar_t elenents of the wchar_array paraneter Itemto the
correspondi ng Wde_Character elenments of Wde_String out paraneter

Tar get . Check that Constraint_Error is propagated by Procedure To_Ada
if the length of Wde_String paraneter Target is not |ong enough to
hol d the converted wchar_array value. Check that Terminator_FError is
propagated by Procedure To_Ada if the parameter TrimNul is set to
True, but the actual Item paraneter contains no w de_n

CXB3008

Check that functions inported fromthe C | anguage <string. h> and
<stdlib.h> libraries can be called froman Ada program

CXB3009

Check that the function To Chars Ptr will return a Null _Ptr val ue when
the paraneter Itemis null. |[If the paraneter Itemis not null, and
references a chars_array object that does contain the char nul, and

parameter Nul _Check is True, check that To_Chars_Ptr performs a pointer
conversion fromchar_array_access type to chars_ptr type. Check that if
paranmeter Itemis not null, and references a chars_array object that
does not contain nul, and paraneter Nul _Check is True, the To_Chars_Ptr
function will propagate Term nator_Error. Check that the

New Char _Array function will return a chars_ptr type pointer to an

al | ocated object that has been initialized with the value of paraneter
Chars. Check that the function New String returns a chars_ptr
initialized to a nul-term nated string having the value of the Str

par anet er .

CXB3010

Check that the Procedure Free resets the paranmeter Itemto Null _Ptr.
Check that Free has no effect if Itemis Null _Ptr. Check that the
version of Function Value with a chars_ptr paraneter returning a
char_array result returns the prefix of an array of chars. Check
that the version of Function Value with a chars_ptr paraneter and a
Size_t paraneter returning a char_array result returns the shorter of:

1) the first size_t nunber of characters, or 2) the characters up to
and including the first nul. Check that both of the above versions
of Function Val ue propagate Dereference_Error if the Item paraneter is
Nul | _Ptr.

CXB3011

Check that the version of Function Value with a chars_ptr paraneter
that returns a String result returns an Ada string containing the
characters pointed to by the chars_ptr paraneter, up to (but not
including) the term nating nul. Check that the version of Function
Value with a chars_ptr parameter and a size_t paraneter that returns a
String result returns the shorter of: 1) a String of the first size_t
nunber of characters, or 2) a String of characters up to (but not
including) the termnating nul. Check that the Function Strlen returns
a size_t result that corresponds to the nunber of chars in the array
pointed to by Item up to but not including the termnating nul. Check
that both of the above versions of Function Value and Function Strlen
propagate Dereference_Error if the Itemparaneter is Null_Ptr.

CXB3012

Check that Procedure Update nodifies the value pointed to by the
chars_ptr paraneter Item starting at the position corresponding to
paranmeter Offset, using the chars in char_array parameter Chars.
Check that the version of Procedure Update with a String paraneter
behaves in the manner described above, but with the character val ues
inthe String overwiting the char values in Item Check that both of
t he above versions of Procedure Update will propagate Update Error if
Check is True, and if the length of the new chars in Chars, when
overlaid starting fromposition Ofset, will overwite the first nu
inltem

CXB30132

Check that inported, user-defined C I|anguage functions can be called
froman Ada program

CXB3014

Check that the Function Value with Pointer and El ement paranmeters will
return an El enent _Array result of correct size and content (up to and
including the first "term nator" El enent). Check that the Function
Val ue with Pointer and Length paraneters wll return an El enent_Array
result of appropriate size and content (the first Length el enents
pointed to by the paraneter Ref). Check that both versions of Function
Value will propagate Interfaces.C. Strings.Dereference_Error when the
val ue of the Ref pointer paraneter is null

CXB3015

Check that the "+" and "-" functions with Pointer and ptrdiff _t
paranmeters that return Pointer values produce correct results, based
on the size of the array elenments. Check that the "-" function with

two Pointer paraneters that returns a ptrdiff_t type paraneter
produces correct results, based on the size of the array el ements.
Check that each of the "+" and "-" functions above will propagate

Pointer_Error if a Pointer paraneter is null. Check that the Increnent
and Decrenent procedures provide the correct "pointer arithmetic"
operations.

CXB3016

Check that function Virtual _Length returns the nunber of elenents in
the array referenced by the Pointer paraneter Ref, up to (but not
including) the (first) instance of the element specified in the

Term nator paraneter. Check that the procedure Copy_Term nated_Array
copies the array of elements referenced by Pointer paraneter Source,
into the array pointed to by paranmeter Target, based on which of the
following two scenarios occurs first: 1) copying the Term nator

el ement, or 2) copying the nunber of elenents specified in paraneter
Limt. Check that procedure Copy_Term nated_Array will propagate
Dereference_Error if either the Source or Target paraneter is null
Check that procedure Copy_Array will copy an array of elenents of

l ength specified in parameter Length, referenced by the Pointer
paranmeter Source, into the array pointed to by paraneter Target. Check
that procedure Copy_Array wi |l propagate Dereference Error if either
the Source or Target paranmeter is null.

CXB4001

Check that the specifications of the package Interfaces. COBOL are
avail abl e for use

CXB4002

Check that the procedure To COBOL converts the character elements of
the String paranmeter Iteminto COBOL_Character elenents of the

Al phanuneric type paranmeter Target, using the Ada_to_COBOL mapping as
t he basis of conversion. Check that the paraneter Last contains the

i ndex of the last element of paranmeter Target that was assigned by
To_COBOL. Check that Constraint_Error is propagated by procedure
To_COBOL when the length of String paraneter Item exceeds the |ength
of Al phanuneric paraneter Target. Check that the procedure To_Ada
converts the COBOL_Character elenents of the Al phanuneric paraneter
Iteminto Character elenments of the String parameter Target, using the
COBOL_to_Ada mapping array as the basis of conversion. Check t hat
the paraneter Last contains the index of the |ast elenent of paraneter
Target that was assigned by To_Ada. Check that Constraint_Error is
propagat ed by procedure To_Ada when the |ength of Al phanuneric
paranmeter Item exceeds the length of String paraneter Target.

CXB4003

Check that function Valid, with the D splay_Format paranmeter set to
Unsigned, will return True if Numeric paranmeter ltem conprises one or
nore decimal digit characters; check that it returns False if the
paranmeter Itemis otherwi se conprised. Check that function Valid, with
Di spl ay_Format paraneter set to Leading Separate, will return True if
Nuneric paraneter Item conprises a single occurrence of a Plus_Sign or
M nus_Sign character, and then by one or nore decimal digit

characters; check that it returns False if the paranmeter Itemis
otherwi se conprised. Check that function Valid, with D splay_Format
paranmeter set to Trailing_Separate, will return True if Nuneric

paranmeter Item conprises one or nore decimal digit characters, and
then by a single occurrence of the Plus_Sign or Mnus_Sign character;
check that it returns False if the paraneter Itemis otherw se

conpri sed.

CXB4004

Check that function Length, with D splay_Format parameter, will return
the mnimal length of a Nunmeric value that will be required to hold
the | argest value of type Numrepresented as Fornat. Check t hat

function To_Decimal will produce a decimal type Num result that
corresponds to paranmeter ltemas represented by paraneter Fornat.
Check that function To_Deci mal propagates Conversion_Error when the
val ue represented by paraneter Itemis outside the range of the

Deci mal _Type Numused to instantiate the package Decinal _Conversions
Check that function To_Display returns a Nuneric type result that
represents ltemunder the specific Display Format. Check that function
To_Di spl ay propagates Conversion_Error when paraneter Itemis negative
and the specified D splay_Format paraneter is Unsigned.

CXB4005

Check that the function To_COBOL will convert a String paraneter val ue
into a type Al phanuneric array of COBOL_Characters, with | ower bound
of one, and length equal to length of the String paraneter, based on
the mapping Ada_to_COBOL. Check that the function To_Ada will convert
a type Al phanuneric paraneter value into a String type result, wth

| ower bound of one, and length equal to the Iength of the A phanuneric
paranmeter, based on the mapping COBOL_to_Ada. Check that the
Ada_to_COBOL and COBOL_to_Ada mapping arrays provide a mappi ng
capability between Ada's type Character and COBOL run-time character
sets.

CXB4006

Check that the function Valid with Packed Deci mal and Packed_ For nat
paranmeters returns True if Item (the Packed_Deci mal paraneter) has a
val ue consistent with the Packed_Format paraneter. Check that the
function Length with Packed_Format paraneter returns the mnimal |ength
of a Packed_Deci mal value sufficient to hold any value of type Num when
represented according to parameter Format. Check that the function
To_Deci mal with Packed_Deci mal and Packed_Format paraneters produces a
deci mal type val ue corresponding to the Packed Deci mal paraneter val ue
Item under the conditions of the Packed_Format paraneter Format.
Check that the function To_Packed with Deci mal (Num and Packed_For mat
par anmeters produces a Packed_Decimal result that corresponds to the
deci mal paraneter under conditions of the Packed Format paraneter.
Check that Conversion_Error is propagated by function To_Packed if the
val ue of the decinmal paraneter Itemis negative and the specified
Packed_Format paraneter is Packed_Unsi gned.

CXB4007

Check that the function Valid with Byte_ Array and Bi nary_For mat
paranmeters returns True if the Byte Array paraneter corresponds to any
val ue inside the range of type Num Check that function Valid returns
False if the Byte Array paraneter corresponds to a value outside the

range of Num Check that function Length with Binary_Format paraneter
will return the minimumlength of a Byte Array value required to hold
any val ue of decinmal type Num Check that function To_Decimal with
Byte Array and Binary_Format paraneters will return a decimal type

val ue that corresponds to paranmeter Item (of type Byte Array) under the
specified Format. Check that Conversion_Error is propagated by
function To_Decimal if the Byte Array paraneter Itemrepresents a

deci mal val ue outside the range of decimal type Num Check that
function To_Binary will produce a Byte Array result that corresponds to
t he deci mal type paranmeter Item under the specified Binary_Format.

CXB4008

Check that the function To_Decimal with Binary paraneter will return
t he correspondi ng val ue of the decimal type Num Check that the

function To_Decimal with Long_Binary parameter will return the
correspondi ng val ue of the decimal type Num Check that both of the
To_Deci mal functions described above will propagate Conversion_Error

if the converted value Itemis outside the range of type Num Check
that the function To_Binary converts a value of the Ada decinmal type
Numinto a Binary type value. Check that the function To_Long_Bi nary
converts a value of the Ada decimal type Numinto a Long Binary type
val ue.

CXB40093

Check that using Pragma Inport (which references a COBOL subprogran) as
a conpletion of a procedure declaration will allow the use of the
i nported subprogram by the calling routine.

CXB5001

Check that the specification of the package Interfaces.Fortran are
avai l abl e for use.

CXB5002

Check that the Function To_Fortran with a Character paraneter wll
return the correspondi ng Fortran Character_Set value. Check that the
Function To_Ada with a Character_Set paraneter will return the
correspondi ng Ada Character value. Check that the Function To_Fortran
with a String paraneter will return the correspondi ng Fortran_Character
value. Check that the Function To Ada with a Fortran_Character
parameter will return the corresponding Ada String val ue.

CXB5003

Check that the procedure To_Fortran converts the character el enents of
the String paranmeter Iteminto Character_Set el enents of the
Fortran_Character type paraneter Target. Check that the paraneter
Last contains the index of the |ast el enent of parameter Target that
was assigned by To _Fortran. Check that Constraint_FError is propagated
by procedure To_Fortran when the length of String paranmeter Item
exceeds the length of Fortran_Character paraneter Target. Check that
the procedure To_Ada converts the Character_Set el enents of the
Fortran_Character paraneter Iteminto Character elenments of the String
paranmeter Target. Check that the paranmeter Last contains the index of

the I ast element of paraneter Target that was assigned by To_Ada.
Check that Constraint_Error is propagated by procedure To_Ada when the
| ength of Fortran_Character parameter |Item exceeds the | ength of
String paraneter Target.

C

C See CXB50042. AM C
C

C See CXB50042. AM C
CXB50042

Check that using Pragma |Inport (which references a Fortran subprogram
as a conpletion of a subprogram declaration will allow the use of the
i nported subprogram by the calling routine.

C

C See CXB50052. AM C
C

C See CXB50052. AM C
CXB50052

Check that using Pragmas |Inmport and Convention allow nodification of an
array in Fortran's columm-nmaj or order

CXC3001

Check that Is_Attached returns False for all non-reserved interrupts to
whi ch no user-defined handl er has been attached. Check that a

user -defi ned handl er can be attached to every interrupt for which

Is Reserved returns False. Check that Is Attached returns True for al
non-reserved interrupts to which a user-defined handl er has been
attached. Check that if Detach_Handl er is subsequently called for such
an interrupt, Is_Attached returns False. Check that, for procedures
Attach_Handl er and Exchange_Handl er, if the parameter New Handl er
designates a protected procedure to which the pragma Interrupt_Handl er
does not apply, ProgramError is raised and the existing interrupt
treatnent is not nodified.

CXC3002

Check that ProgramError is raised if the interrupt corresponding to
that specified by the expression in pragma Attach_Handler is reserved.

CXC3003

Check that when a protected object is finalized, for any of its
procedures that are attached to interrupts, the handler is detached.
Check that if the handl er was attached by a pragma Attach_Handl er, the
previ ous handler is restored.

CXC3004

Check that an exception propagated froma handl er invoked by an
interrupt has no effect. Check that the exception causes further
execution of the handler to be abandoned.

CXC3005

Check that Program Error is raised if an actual parameter of type
Ada.Interrupts.Interrupt _IDis passed in a call to any of the foll ow ng
operations in package Ada.lnterrupts, and the specified interrupt is
reserved: |Is Attached, Current Handler, Attach_Handl er

Exchange_Handl er, Detach_Handl er.

CXC3006

Check that ProgramError is raised if, by using the Ada.Interrupts
procedure Attach_Handl er, Detach_Handl er, or Exchange_Handl er, an
attenpt is made to detach an interrupt handl er that was attached using
the pragma Attach_Handl er. Check that, in each case, the handler
attached by the pragma is not detached.

CXC3007

Check that if the actual paraneter corresponding to the fornal
paranmeter New Handler in a call to either of the procedures

Ada. I nterrupts. Attach_Handl er or Ada.lnterrupts. Exchange_Handl er has
one of the follow ng values, the default treatnent for the specified
interrupt is restored: The value null. The value returned by the
function Current Handl er when no user-defined handler is attached to
the specified interrupt.

CXC3008

Check that the procedures Ada.Interrupts. Attach_Handl er and

Ada. | nt errupts. Exchange_Handl er attach a specified handler to a
specified interrupt, overriding any existing treatnent. Check that, for
Exchange_Handl er, the value returned in O d_Handl er designates the
previous treatnment for the interrupt. Check that the procedure

Ada. I nterrupts. Current _Handl er returns a value that represents the
attached handl er of the specified interrupt. Check that the procedure
Ada. I nterrupts. Detach_Handl er restores the default treatnment for the
specified interrupt. Check that an attached handler is called once for
each delivered interrupt occurrence.

CXC3009

Check that an exception propagated froma handl er invoked by an
interrupt has no effect. Check that the exception causes further
execution of the handler to be abandoned.

CXC6001
Check that atomic and volatile elenentary types that are not by-copy

types, as well as types with subconponents that are atomic or volatile
are by-reference types.

CXC6002

For volatile conposite types that are not by-copy types, and types with
vol atil e subconmponents: check that paraneters are passed by copy when
an actual paraneter is defined as volatile, and the formal paraneter is
not .

CXC6003

Check that all reads and updates of atomic and volatile objects are
performed directly to nmenory. Check that reads and updates of atonmic
obj ects are indivisible. Check that pragma Pack and pragna

At onmi c_Conponents can be used toget her

CXCr001

In the package Ada. Task_ldentification, check that Current_Task returns
the Task_ID of the calling task; Abort_Task aborts the task
corresponding to the Task_ID paraneter; Is_Ternmnated and Is_Call able
return the corresponding attribute values for the task corresponding to
the Task_ID paraneter. Check that an object of type Task ID is default
initialized to Null _Task_ID. Check that the attribute T Identity
returns a Task ID that identifies task T and the C Caller returns a
Task_ID that identifies the caller of entry E.

CXCr7002

Check that when an instance of package Task_Attributes is el aborated,
an object of the actual type corresponding to the formal type Attribute
isinmplicitly created for each task that exists and is not yet

term nated. Check that Value returns the value set by Set_ Val ue. Check
that Tasking Error is raised if a Task_Attributes operation is
attenpted on a term nated task. Check that ProgramError is raised if a
Task_Attributes operation is attenpted on a null Task_Id.

CXC7003

Check that the Task_Attributes operations Set_Value and Reinitialize
perfornms finalization on the old value of the attribute of the
speci fied task.

CXD1001

Check that the range of System Priority is at |east 30 val ues; that
System Interrupt_Priority has at |east one value and is higher than
System Priority and the System Default_Priority is at the center of the
range of System Priority. Check the behavi or of

Ada. Dynamic_Priorities.Set_Priority and Get_Priority; specifically that
Set _Priority will set a value that can later be confirmed with
Get_Priority. Check that, in the absence of Pragma Priority, the
mai n subprogram has a base priority of Default_Priority.

CXD1002

Check that the base priority of the main subprogram can be set by neans
of pragma priority. Check that a task's base priority is the

priority of the parent at the tinme the task is created when the
priority of the parent has been set by neans of pragma priority Check
that a task's base priority is the priority of the parent at the tine
the task is created when the priority of the grandfather has been set
by means of pragma priority

CXD1003

Check that during rendezvous, the task accepting the entry cal
i nherits the active priority of the caller. Specifically, check when
the caller has a higher priority than the receiver.

CXD1004

Check that during activation, a task being activated inherits the
active priority of its activator (in this case the activator's base
priority). Check that, if this priority is higher than the base
priority of the activated task, this base priority remai ns unchanged.

CXD1005

Check that, during activation, a task being activated inherits the
active priority of its activator. Specifically, check when the active
priority of the activator is higher than the activator's Base

Priority. Check that if the priority of the activated task is higher
than its base priority, the base priority remai ns unchanged.

CXD1006

Check that if there is no expression in an Interrupt_Priority pragma
that the priority value is Interrupt_Priority' Last.

CXD1007

Check that a priority pragma has no effect if it occurs in the

decl arative_part of a subprogram body other than the main subprogram
Check that the priority specified for the main subprogramsets the
priority of the environnent task. Check that dynam c val ues can be
specified in the interrupt_priority and priority pragnas.

CXD1008

Check that task scheduling, floating point operations, and exceptions
wor k properly together.

CXD2001

Check that when Task_Dispatching Policy is FIFOWthin_Priorities and
the setting of the base priority of a task takes effect, the task is
added to the tail of the ready queue of its active priority.

CXD2002
Check that when Task_Dispatching Policy is FIFOWthin Priorities and a

task executes a delay statenent that does not result in blocking, it
is added to the tail of the ready queue of its active priority.

CXD2003

Check that when Task_Dispatching Policy is FIFOWthin_Priorities and
and a task's priority is lowered due to the loss of inherited priority
it is added to the head of the ready queue for its priority

CXD2004

Check that when Task_Dispatching Policy is FIFOWthin_Priorities and
the active priority of a running task is |lowered due to loss of its
inherited priority and there is a ready task of the sane priority that
is not running, the running task continues to run

CXD2005 (This test has been renoved)

Check that when the active priority of a ready task that is not
runni ng changes that the task is renmoved fromthe ready queue for its
old active priority and is added at the tail of the ready queue for
its new active priority.

CXD2006

Check that priority ceases to be inherited as soon as the condition
calling for the inheritance no | onger exists.

CXD2007

Check that a new running task is sel ected whenever there is a nonenpty
ready queue with a higher priority than the priority of the running
task. Check that when a task is preenpted it is added to the head of
the ready queue for its active priority.

CXD2008

Check that if the Task_Dispatching Policy is FIFOWthin_Priorities
and a bl ocked task becones ready then it is added to the tail of the
ready queue for its priority.

CXD3001

Check that ProgramError is raised if a task calls a protected
operation who's ceiling is lower than the task's active priority. Check
this for Function, Procedure and Entry. Check that the exception is
not raised if the ceiling is equal to or higher than the priority of
the calling task.

CXD3002

Check that when Locking Policy is Ceiling_Locking and no pragma
Priority, Interrupt_Priority, Interrupt_Handler or Attach_Handler is
specified in a protected definition the Ceiling Priority of the
protected object is SystemPriority'Last

CXD3003

Check that when Locking Policy is Ceiling_Locking and no pragma
Priority or Interrupt_Priority is specified in a protected definition

but a pragma Interrupt_Handler is specified, the ceiling priority is
in the range of SystemlInterrupt_Priority.

CXD4001

Check that when Priority Queuing is in effect and the base priority of
a task is set (changed), the priorities of any queued calls fromthat
task are updated and that the ordering is nodified accordingly.

CXD4002

Check that if no Queuing Policy is specified, the policy for the
partition is FI FO Queuing and that the priorities of the calling tasks
have no effect.

CXD4003

Check that if Queuing Policy FIFO Queuing is specified for a partition
the task entry queues are handled in FIFO order and that the
priorities of the calling tasks have no effect.

CXD4004

Check that changes to the active priority of the caller do not affect
the priority of a call after it is first queued when the queuing policy
is priority queuing.

CXD4005

Check that when Priority Queuing is in effect and the base priority of
a task is set (changed), the priorities of any queued calls fromthat
task to entries in a Protected (bject are updated and that the
ordering is nodified accordingly.

CXD4006

Check that if Queuing Policy is Priority_Queuing, the calls to an entry
are queued in an order consistent with the priority of the calls and
that if an entry is renoved and then reinserted it is added behind any
other calls with equal priority in that queue.

CXD4007

Check that when multiple entry barriers of a protected object becone
True and nore than one of the respective queues are nonenpty, the cal
with the highest priority is selected. Check that a m ni num of 30
different priorities can be specified and that the priorities nmake a
difference in the task scheduling.

CXD4008

Check that when: nultiple entry barriers of a protected object becone
True, nore than one of the respective queues are nonenpty, and the
callers are all of the sane priority then the entries are taken in
textual order. Check that when: nultiple alternatives of a

sel ective_accept have queued callers and the callers are all of the
same priority then the accept_alternative that is textually first in

the sel ective_accept is selected.
CXD4009

Check that when multiple alternatives of a selective_accept have queued
callers and the callers are all of different priority then the

accept _alternative that has the highest priority task waiting is

sel ect ed.

CXD4010

Check that if the expiration time of two open delay_alternatives is the
same and no ot her accept_alternatives are open then the

sequence_of _statenments of the delay_alternative that is first in
textual order in the selective_accept is executed.

CXD5001

Check that for Get_Priority, Tasking Error is raised if the specified
task has term nated. Check that for Get & Set Priority, ProgramError
is raised if the task has a null Task Identification

CXD5002 (This test has been renoved)

Check that when setting a task's base priority to a new value that the
new val ue does not take effect while the task is performng a
protected action.

CXD6001

Check that an aborted construct is conpleted inmediately at the first
point that is outside the execution of an abort-deferred operation

CXD6002

Check that in an asynchronous transfer of control an aborted construct
is conpleted i Mmediately at the first point that is outside the
execution of an abort-deferred operation

CXD6003

Check that in an asynchronous transfer of control an aborted construct
is conpleted i Mmediately at the first point that is outside the
execution of an abort-deferred operation where the abort-deferred
operation is the default initialization and finalization of a
controll ed object, or an assignment to a controlled type object.

CXD8001

Check the basic functions in the Package Ada. Real _Ti ne.

CXD8002

Check that Ada.Real _Tine.Tine can be used in a delay_until_statenent.

Check that a delay_statenment bl ocks the task for at |east as |long as
t he requested del ay as neasured by Real _Tine. d ock

CXD8003

Check that the Ada. Real _Ti me package operations Split and Time_O
operations work properly. Check that the clock does not junp
backwar ds.

CXD9001

Check that when a delay_statenment appears in a delay_alternative of a
timed_entry call the entry call is attenpted regardless of the
specified expiration tinme.

CXDA0O1

Check that, in Ada. Synchronous_Task_Control, Set_True and Set_Fal se
alter the state of a Suspension_Cbject appropriately. Check that
Current _State returns the expected state. Check that the initial
val ue of a Suspension_(bject is set to fal se.

CXDA002

Check that, in Ada. Synchronous_Task_Control, Suspend_Until_True does
suspend the task until the Suspension_Object is Set_True. Check that a
call on Suspend_Until_True will raise ProgramError if another task is
waiting on the same Suspension_QObject.

CXDAOO3

Check that Set_Fal se and Set _True can be called during a protected
operation that has its ceiling priority in the Interrupt_Priority
range.

CXDA00O4

Check that Set_Fal se and Set _True can be called froman interrupt
handl er. Check that a Suspension_Cbject is a by reference type. Check
that Current_State returns the current state of a suspension object.
Check that Program Error is raised upon calling Suspend_Until_True if
another task is waiting on that suspension object.

CXDB001

Check that, in Ada. Asynchronous_Task Control, the Hold operation
reduces the priority of the target task to such a state that it does
not run and that Continue raises it such that it will run again.

Check that Is_Held returns true if, and only if, the target task is in
the Held state. Check that Tasking Error is raised if any of these
operations is applied to a task that is term nated.

CXDB002

Check that the effect of calling Get_Priority and Set_Priority on a
Held task is the same as on any ot her task.

CXDB003

Check that if a task becones Held while waiting in a selective accept

and an entry call is issued to one of the open entries, the
correspondi ng accept body executes. Check that once the rendezvous
conpl etes the task does not execute until another Continue.

CXDB004

Check that if a calling task is Held while waiting for a rendezvous to
conplete the active priority of the receiver is unaffected.

CXDB005 (This test has been renoved)

Check that Hold-ing a task causes that task to no |longer actively
contribute to the priority inheritance of other tasks.

CXDC001 (This test has been renoved)

Check that Unchecked_Deal | ocation is supported for term nated tasks
that are designated by access types and has the effect of releasing
all the storage associated with the task

CXE1001

Check that the attribute D Partition ID is available where D denotes a
library | evel declaration. Check that this attribute identifies the
partition in which Dis elaborated.

CXE2001

Check that only one copy of the data in a shared passive library unit
is present in a program Check that a protected object declared in a
shared passive library unit can be used fromboth partitions of a two
partition program

CXE4001

Check that exception propagati on between partitions is properly

handl ed. In particular check that: a predefined exception can be
raised in one partition and handled in another; an exception declared
inarenote call interface library unit can be raised in one partition
and handl ed in another partition; an exception declared in partition A
and not visible to partition B can be raised in partition A and

handl ed in partition B with an others clause; an exception declared in
a partition A and not visible to partition B can be raised in partition
A, propagated through partition B, and handl ed back in A

CXE4002

Check that paranmeter passing to renote procedures is handled properly
when the size of the paraneters can be determned at conpile tinme.
Check that the follow ng types can be passed as paraneters: integer
float, static sized arrays, and sinple records. Check the paraneter
passing using all three nodes and check that function results of the
various types are handled properly. Check that both direct subprogram
calls and indirect <calls through a value of a renpte access to
subprogram can be used for the call

CXE4003

Check that the task executing a renote subprogramcall blocks until the
subprogramin the called partition returns. Check that a renote
procedure call can be aborted. Check that renote subprogramcalls are
executed at nost once. Check that potentially concurrent calls from
mul ti ple tasks can be handl ed by the PCS

CXE4004

Check that paraneter passing to renote procedures is handled properly
when the paraneters are of a dynamic size or have discrimnants. Check
that the followi ng types can be passed as paraneters: dynanic sized
arrays, constrained discrimnated records, unconstrained discrimnated
records, and tagged records. Check the paraneter passing using al

t hree nodes and check that function results of the various types are
handl ed properly. Check that both direct subprogramcalls and indirect
calls through a value of a renote access to subprogramcan be used for
the call.

CXE4005

Check that calls can be made to renote procedures when a dispatching
call is nmade to a renote access to class wide type. (5) Check that
Program Error is raised if the tag of the actual paraneter identifies a
tagged type declared in a normal package or in the body of a renote
call interface package. (18) Check that in a dispatching call with two
controlling operands, Constraint_Error is raised if the two renote
access-to-cl ass-wi de values originated from Access attribute_references
in different partitions. (19)

CXE4006

Check that calls can be made to renote procedures when a dispatching
call is made where the controlling operand designates a type decl ared
in arenote call interface package. Check that tagged types can be
passed between partitions when passed as a class-wide type. In a renote
subprogramcall with a formal paranmeter of a class-w de type, check
that ProgramError is raised if the actual paraneter identifies a
tagged type declared in a normal package.

CXE5001

Check that the specifications of the package System RPC are avail abl e
for use.

CXE5002

Check that the Partition Comruni cati on Subsystemis used for handling
renote calls. Check that pragma Asynchronous causes procedure Do _APC to
be called and that all other calls go through Do _RPC. Check that
pragma All _Calls_Renote is honored by making a call to an RCl unit in
the sane partition.

CXE5003

Check that System RPC. Establish_RPC Receiver is called once after
el aborating the library units of a partition and prior to invoking the

mai n procedure for the partition
CXF1001

Check that values of 2 and 10 are all owabl e val ues for Machi ne_Radi x

of a decimal first subtype. Check that the val ue of

Deci mal . Max_Decimal _Digits is at |least 18; the val ue of
Decimal . Max_Scale is at |least 18; the value of Decimal.Mn_Scale is at
nmost O.

CXF2001

Check that the Divide procedure provides the followi ng results:
Quotient = Dividend divided by D visor and Renmainder = Dividend -
(Divisor * Quotient) Check that the Remainder is cal cul ated exactly.

CXF2002

Check that the multiplying operators for a decimal fixed point type
return values that are integral multiples of the small of the type.
Check the case where the operand and result types are the same. Check
that if the mathematical result is between multiples of the small of
the result type, the result is truncated toward zero. Check that if the
attribute "Round is applied to the mathematical result, however, the
result is rounded to the nearest nultiple of the small (away from zero
if the result is mdway between two nultiples of the snall).

CXF2003

Check that the multiplying operators for a decimal fixed point type
return values that are integral multiples of the small of the type.
Check the case where the two operands are of different decimal fixed
point types. Check that if the mathematical result is between
multiples of the small of the result type, the result is truncated
toward zero. Check that if the attribute 'Round is applied to the

mat hematical result, however, the result is rounded to the nearest
multiple of the small (away fromzero if the result is m dway between
two multiples of the small).

CXF2004

Check that the multiplying operators for a decimal fixed point type
return values that are integral multiples of the small of the type.
Check the case where one operand is of an ordinary fixed point type.
Check that if the mathematical result is between nultiples of the snal
of the result type, the result is truncated toward zero. Check that if
the attribute 'Round is applied to the mathematical result, however,
the result is rounded to the nearest nultiple of the small (away from
zero if the result is mdway between two nultiples of the small).

CXF2005

Check that the multiplying operators for a decimal fixed point type
return values that are integral multiples of the small of the type.
Check the case where one operand is of the predefined type Integer

CXF2A01

Check that the binary adding operators for a decimal fixed point type
return values that are integral multiples of the small of the type.

CXF2A02

Check that the multiplying operators for a decimal fixed point type
return values that are integral multiples of the small of the type.
Check the case where the operand and result types are the same. Check
that if the mathematical result is between multiples of the small of
the result type, the result is truncated toward zero

CXF3001

Check that the edited output string value returned by Function Inage is
correct.

CXF3002

Check that the functionality contained i n package
Ada. Wde_Text 1O Editing is avail abl e and produces correct results.

CXF3003

Check that statically identifiable picture strings can be used to
produce correctly formatted edited output.

CXF3004

Check that statically identifiable picture strings can be used in
conjunction with function Image to produce output strings appropriate
to foreign currency representations. Check that statically
identifiable picture strings will cause function Inmage to raise

Layout _Error under the appropriate conditions.

CXF3A01

Check that the function Ada.Text IO Editing.Valid returns False if a)
Pic_String is not a well-forned Picture string, or b) the |length of

Pic_String exceeds Max_Picture_Length, or c) Blank _\When_Zero is True
and Pic_String contains '*'; Check that Valid otherwi se returns True.

CXF3A02

Check that the function Ada. Text IO Editing. To_Picture raises

Picture Error if the picture string provided as input paraneter does
not conformto the conposition constraints defined for picture

strings. Check that when Pic_String is applied to To_Picture, the
result is equivalent to the actual string paraneter of To_Picture;
Check that when Bl ank_\Wen_Zero is applied to To_Picture, the result is
t he sane val ue as the Bl ank_Wen_Zero paraneter of To_Picture

CXF3A03
Check that function Length in the generic package Deci mal _CQut put

returns the nunber of characters in the edited output string produced
by function Inmage, for a particular deciml type, currency string, and

radi x mark. Check that function Valid in the generic package
Deci mal _Qutput returns correct results based on the particul ar deci mal
value, and the Picture and Currency string paraneters.

CXF3A04

Check that the edited output string value returned by Function Inage is
correct.

CXF3A05

Check that Function |Inmage produces correct results when provi ded
non-default parameters for Currency, Fill, Separator, and Radix_Mark
at either the tinme of package Decimal _Qutput instantiation, or in a
call to Image. Check non-default paraneters that are appropriate for
foreign currency representations.

CXF3A06

Check that Ada.Text 1O Editing. Put and Ada. Text | O Put have the sane
effect.

CXF3A07

Check that Ada.Text_ 1O Editing. Put and Ada. Strings. Fi xed. Move have the
same effect in putting edited output results into string variabl es.

CXF3A08

Check that the version of Ada. Text IO Editing.Put with an out String
par amet er propagates Layout Error if the edited output string result
of Put exceeds the length of the out String paraneter.

CXG1001

Check that the subprograns defined in the package

Ada. Nuner i cs. Generi c_Conpl ex_Types provide correct results.
Specifically, check the functions Re, Im (both versions), procedures
Set _Re, Set_Im (both versions), functions Conpose_From Cartesian (al
versions), Conpose_From Pol ar, Mdul us, Argunent, and "abs".

CXGL002

Check that the subprograns defined in the package

Ada. Nuneri cs. Generi c_Conpl ex_Types provide the prescribed results.
Speci fically, check the various versions of functions "+" and "-"

CXG1003

Check that the subprograns defined in the package Text | O Complex_ IO
provi de correct results.

CXGL004
Check that the specified exceptions are raised by the subprograns

defined i n package Ada. Nunerics. Generic_Conpl ex_El enentary_Functi ons
gi ven the prescribed i nput parameter val ues.

CXG1005

Check that the subprograns defined in the package
Ada. Nuneri cs. Generi c_Conpl ex_El enment ary_Functi ons provi de correct
results.

CX&001

Check that the floating point attributes Mdel Mnti ssa,

Machi ne_Manti ssa, Machi ne_Radi x, and Machi ne_Rounds are properly
reported.

CX&x2002

Check that the conplex "abs" or nmodulus function returns results that
are within the error bound all owed.

CX&2003

Check that the sqrt function returns results that are within the error
bound al | owed.

CX&2004

Check that the sin and cos functions return results that are within the
error bound al | owed.

CX&2005

Check that floating point addition and multiplication have the required
accuracy.

CX&2006

Check that the conplex Argunent function returns results that are
within the error bound all owed. Check that Argunent Error is raised if
the Cycle paraneter is less than or equal to zero.

CX&2007

Check that the conpl ex Conpose From Pol ar function returns results that
are within the error bound all owed. Check that Argunent_Error is raised
if the Cycle paraneter is less than or equal to zero.

CX&X2008

Check that the conplex multiplication and division operations return
results that are within the allowed error bound. Check that all the
requi red pure Numerics packages are pure.

CX&2009

Check that the real sqgrt and conpl ex nodul us functions return results
that are within the allowed error bound.

CX&2010

Check that the exp function returns results that are within the error
bound al | owed.

CX&011

Check that the log function returns results that are within the error
bound al | owed.

CX&x2012

Check that the exponentiation operator returns results that are within
the error bound all owed.

CX&2013

Check that the TAN and COT functions return results that are within the
error bound al | owed.

CX&2014

Check that the SINH and COSH functions return results that are within
the error bound al |l owned.

CX&2015

Check that the ARCSIN and ARCCCS functions return results that are
within the error bound al |l owned.

CX&2016

Check that the ARCTAN function returns a result that is within the
error bound al | owed.

CX&x2017

Check that the TANH function returns a result that is within the error
bound al | owed.

CX&2018

Check that the conplex EXP function returns a result that is within the
error bound al | owed.

CX&x2019

Check that the conplex LOG function returns a result that is within the
error bound al | owed.

CX&2020

Check that the conplex SQRT function returns a result that is within
the error bound all owed.

CX&x021

Check that the conplex SIN and COS functions return a result that is

within the error bound al | owned.
CX&2022

Check that multiplication and division of binary fixed point nunbers
wi th conpatible 'small val ues produce exact results.

CX&2023

CX&2024

Check that multiplication and division of decimal and binary fixed
poi nt nunmbers that result in a decimal fixed point type produce
acceptabl e results.

CXH1001

Check pragma Nornmalize_Scal ars. Check that this configuration pragma
causes uninitialized scalar objects to be set to a predictable val ue.
Check that multiple conpilation units are affected. Check for
uninitialized scal ar objects that are subconmponents of conposite

obj ects, unassigned out paraneters, objects that have been all ocated
wi thout an initial value, and objects that are stand al one.

CXH3001

Check pragma Revi ewabl e. Check that pragma Reviewable is accepted as a
configuration pragma.

CXH3002

Check that pragma | nspection_Point is allowed whereever a declarative
itemor statenent is allowed. Check that pragma |Inspection_Point may
have zero or nore argunments. Check that the execution of pragna

I nspection_Point has no effect.

CXH30030

See CHX30031. AM

CXH30031

Check pragma Revi ewabl e. Check that pragma Reviewable is accepted as a
configuration pragma.

F954A00

This file contains foundation code for tests covering the requeue
st at enent .

LA140010
See LA140011. AM

LA140011

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
library I evel function body depends on a unit that is changed.

LA140012

See LA140011. AM

LA140020

See LA140021. AM

LA140021

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
unit depends on a package whose declaration is changed.

LA140022

See LA140021. AM

LA140030

See LA140032. AM

LA140031

See LA140032. AM

LA140032

Check that a conpilation unit nay not depend semantically on two
different versions of the same conpilation unit. Check the case where a
package body depends on a package specification that is changed.
LA140033

See LA140032. AM

LA140040

See LA140041. AM

LA140041

Check that a conpilation unit nmay not depend semantically on two
different versions of the same conpilation unit. Check the case where a
generic function depends on a Ilibrary |evel package.

LA140042

See LA140041. AM

LA140050

See LA140052. AM

LA140051

See LA140052. AM

LA140052

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the sanme conpilation unit. Check the case where
a generic package body depends on a generic package specification
LA140053

See LA140052. AM

LA140060

See LA140062. AM

LA140061

See LA140062. AM

LA140062

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
generi c package depends on another generic package specification
LA140063

See LA140062. AM

LA140070

See LA140072. AM

LA140071

See LA140072. AM

LA140072

Check that a conpilation unit nmay not depend semantically on two
different versions of the same conpilation unit. Check the case where a
separ ate procedure body depends on a non-generic package specification
that is changed.

LA140073

See LA140072. AM

LA140080

See LA140082. AM

LA140081

See LA140082. AM

LA140082

Check that a conpilation unit nmay not depend semantically on two
di fferent versions of the same conpilation unit. Check the case where a
subunit function body depends on a unit that is changed.
LA140083

See LA140082. AM

LA140090

See LA140092. AM

LA140091

See LA140092. AM

LA140092

Check that a conpilation unit nmay not depend semantically on two
di fferent versions of the same conpilation unit. Check the case where a
subunit package body depends on a unit that is changed.

LA140093

See LA140092. AM

LA140100

See LA140102. AM

LA140101

See LA140102. AM

LA140102

Check that a conpilation unit nmay not depend semantically on two
di fferent versions of the same conpilation unit. Check the case where a
task body depends on a package specification

LA140103

See LA140102. AM

LA140110

See LA140112. AM

LA140111

See LA140112. AM

LA140112

Check that a conpilation unit nay not depend semantically on two
di fferent versions of the same conpilation unit. Check the case where a
library procedure depends on a unit that is changed.

LA140113

See LA140112. AM

LA140120

See LA140122. AM

LA140121

See LA140122. AM

LA140122

Check that a conpilation unit nmay not depend semantically on two
different versions of the same conpilation unit. Check the case where a
library I evel function depends on a unit that is changed.
LA140123

See LA140122. AM

LA140130

See LA140132. AM

LA140131

See LA140132. AM

LA140132

Check that a conpilation unit nmay not depend semantically on two
di fferent versions of the same conpilation unit. Check the case where a
library | evel package depends on a package specification that is
changed.

LA140133

See LA140132. AM

LA140140

See LA140142. AM

LA140141

See LA140142. AM

LA140142

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
library | evel procedure depends on another library |evel procedure that
i s changed.

LA140143

See LA140142. AM

LA140150

See LA140152. AM

LA140151

See LA140152. AM

LA140152

Check that a conpilation unit nay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
library I evel function depends on another library Ievel function that

i s changed.

LA140153

See LA140152. AM

LA140160

See LA140162. AM

LA140161

See LA140162. AM

LA140162

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
separ ate procedure depends on a withed generic package that is

changed.

LA140163

See LA140162. AM

LA140170

See LA140172. AM

LA140171

See LA140172. AM

LA140172

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
separate function semantically depends on a library |evel generic
function that is changed.

LA140173

See LA140172. AM

LA140180

See LA140182. AM

LA140181

See LA140182. AM

LA140182

Check that a conpilation unit nay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
separ ate generic package body depends on a library | evel generic
package body that is changed.

LA140183

See LA140182. AM

LA140190

See LA140192. AM

LA140191

See LA140192. AM

LA140192

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
library | evel generic procedure depends on library |evel procedure that
i s changed.

LA140193

See LA140192. AM

LA140200

See LA140202. AM

LA140201

See LA140202. AM

LA140202

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
library | evel instance depends on a library |evel generic function
whose body is changed.

LA140203

See LA140202. AM

LA140210

See LA140211. AM

LA140211

Check that a conpilation unit nay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
generi c package depends on anot her generic package that is changed.
LA140212

See LA140211. AM

LA140220

See LA140221. AM

LA140221

Check that a conpilation unit nay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
generic instantiation depends on a generic procedure that is changed.
LA140222

See LA140221. AM

LA140230

See LA140232. AM

LA140231

See LA140232. AM

LA140232

Check that a conpilation unit nay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
generic instantiati on depends on a generic function that is changed.
LA140233

See LA140232. AM

LA140240

See LA140242. AM

LA140241

See LA140242. AM

LA140242

Check that a conpilation unit nay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
generic instantiation depends on a generic package that is changed.
LA140243

See LA140242. AM

LA140250

See LA140251. AM

LA140251

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
generic instantiation depends on a non-generic package that is
changed.

LA140252

See LA140251. AM

LA140260

See LA140262. AM

LA140261

See LA140262. AM

LA140262

Check that a conpilation unit nmay not depend semantically on two

di fferent versions of the same conpilation unit. Check the case where a
generic instantiation depends on a generic package instantiation that
i s changed.

LA140263

See LA140262. AM

LA140270

See LA140272. AM

LA140271

See LA140272. AM

LA140272

Check that a conpilation unit nay not depend semantically on two
di fferent versions of the same conpilation unit. Check the case where a
task body depends on non-generic package specification

LA140273

See LA140272. AM

LXD70010

See LXDr0012. AM

LXD70011

See LXDr0012. AM

LXD70012

Check that a partition obeys the restriction if a configuration pragna
Restrictions (No_Task_Hierarchy) is included.

LXD70030

See LXDr0032. AM

LXD70031

See LXDr0032. AM

LXD70032

Check that a partition obeys the restriction if a configuration pragna
Restrictions (No_Abort_Statenents) is included. Specifically a task
with an abort_statenent is not all owed.

LXD70040

See LXDr0042. AM

LXD70041

See LXDr0042. AM

LXD70042

Check that a partition obeys the restriction if a configuration pragna
Restrictions (No_Term nate_Alternatives) is included.

LXD70050
See LXDr0052. AM

LXD70051

See LXDr0052. AM
LXD70052

Check that a partition obeys the restriction if a configuration pragna
Restrictions (No_Task Allocators) is included.

LXD70060

See LXDr0062. AM

LXD70061

See LXDr0062. AM

LXD70062

Check that a partition obeys the restriction if a configuration pragna
Restrictions (No_Task_Allocators) is included. Specifically that there
are no allocators for types containing task subconponents

LXD70070

See LXD70072. AM

LXD70071

See LXD70072. AM

LXD70072

Check that a partition obeys the restriction if a configuration pragna
Restrictions (No_Dynamc_Priorities) is included. Specifically when
there is a semantic dependency on Ada.Dynamic_Priorities in a package
maki ng up the partition

LXD70080

See LXDr0082. AM

LXD70081

See LXDr0082. AM

LXD70082

Check that a partition obeys the restriction if a configuration pragna
Restrictions (No_Asynchronous_Control) is included

LXD70090
See LXDr0092. AM
LXD70091

See LXDr0092. AM

LXD70092

Check that a partition obeys the restriction if the follow ng
configuration restrictions are included: pragma Restrictions
(Max_Sel ect _Alternatives => 0) pragna Restrictions
(Max_Task_Entries => 0) pragma Restrictions
(Max_Protected_Entries => 0)

LXE30010

This test checks that an inconsistent distributed program is properly
det ect ed.

LXE30011

See LXE30010. AM

LXE30020

Check that an inconsistent distributed program is properly detected.
LXE30021

See LXE30020. AM

LXH40010

See file LXH40012. AM for test objective.

LXH40011

See file LXH40012. AM for objective.

LXH40012

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No_Protected_Types disallows protected types in the units previously
conpiled into the programlibrary.

LXH40020

See file LXHA0022. AMfor details on this test

LXH40021

See file LXHA0022. AMfor details on this test

LXH40022

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragma Restrictions with the specific restriction

No_Al | ocators disallows allocators in the units previously conpiled
into the programlibrary.

LXH40030

See file LXH40033. AMfor details on this test

LXH40031

See file LXH40033. AMfor details on this test

LXH40032

See file LXH4A0033. AMfor details on this test

LXH40033

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragm Restrictions with the specific restriction
No_Local _All ocators disallows local allocators in the units previously
conpiled into the programlibrary.

LXH40040

See file LXH40043. AMfor details on this test

LXH40041

See file LXH40041. AMfor details on this test

LXH40042

See file LXH40043. AMfor details on this test

LXH40043

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No_Unchecked Deal | ocation disallows the use of Unchecked Deal | ocation
in the units previously conpiled into the programlibrary.

LXH40050

See file LXHA0053. AMfor details on this test

LXH40051

See file LXHA0053. AMfor details on this test

LXH40052

See file LXHA0053. AMfor details on this test

LXH40053

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of

the configuration pragnma Restrictions with the specific restriction
No_Exceptions disallows exceptions in the units previously conpiled
into the programlibrary.

LXH40060

See file LXH4A0063. AMfor details on this test

LXH40061

See file LXHA0063. AMfor details on this test

LXH40062

See file LXH4A0063. AMfor details on this test

LXH40063

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No_Fl oati ng _Point disallows the use of floating point in the units
previously conpiled into the programlibrary.

LXH40070

See file LXH4A0073. AMfor details on this test

LXH40071

See file LXH4A0073. AMfor details on this test

LXH40072

See file LXH4A0073. AMfor details on this test

LXH40073

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No_Fi xed_Poi nt disallows the use of fixed point in the units previously
conpiled into the programlibrary.

LXH40080

See file LXH4A0084. AMfor details on this test

LXH40081

See file LXHA0084. AMfor details on this test

LXH40082

See file LXHA0084. AMfor details on this test

LXH40083

See file LXH4A0084. AMfor details on this test

LXH40084

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No_Unchecked Conversion disallows the use of Unchecked Conversion in
the units previously conpiled into the programlibrary.

LXH40090

See file LXHA0093. AMfor details on this test

LXH40091

See file LXHA0093. AMfor details on this test

LXH40092

See file LXHA0093. AMfor details on this test

LXH40093

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No_Access_Subprograns disall ows access to subprograns in the units
previously conpiled into the programlibrary.

LXH40100

See file LXH40103. AMfor details on this test

LXH40101

See file LXH40103. AMfor details on this test

LXH40102

See file LXH40103. AMfor details on this test

LXH40103

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No_Unchecked Access disallows the use of the Unchecked Access attribute
in the units previously conpiled into the programlibrary.

LXH40110

See file LXH40112. AMfor details on this test

LXH40111

See file LXH40112. AMfor details on this test

LXH40112

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragm Restrictions with the specific restriction
No_Di spatch disallows T'Class in the units previously conpiled into the
programlibrary.

LXH40120

See file LXH40123. AMfor details on this test

LXH40121

See file LXH40123. AMfor details on this test

LXH40122

See file LXH40123. AMfor details on this test

LXH40123

Check that pragma Restrictions (using the restrictions defined in Annex
H) applies to all units in a partition. Check that the application of
the configuration pragnma Restrictions with the specific restriction
No IO disallows 1/Oin the units previously conpiled into the program
library.

LXH40130

See file LXH40133. AMfor details on this test

LXH40131

See file LXH40133. AMfor details on this test

LXH40132

See file LXH40133. AMfor details on this test

LXH40133

Check that pragma Restrictions (using the restrictions defined

in Annex H) applies to all units in a partition

Check that the application of the configuration pragma Restrictions
with the specific restriction: No_Del ay

di sall ows delay statenments in the units previously conpiled into

the programlibrary.

LXH40140

See file LXH40142. AMfor details on this test

LXH40141

See file LXH40142. AMfor details on this test

LXHA0142

Check that pragma Restrictions (using the restrictions defined

in Annex H) applies to all units in a partition.

Check that the application of the configuration pragma Restrictions
with the specific restriction: No_Di spatch

disallows T'Class in units conpiled after the configuration pragna.

